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Chapter 1

Introduction to Computational

Aeroacoustics

(‘'omputational Aeroacoustics (CAA) is a relatively new and rapidly growing field of research that
conmbines the traditional disciplines of Aeroacoustics and Computational Fluid Dynamics (CFD).
It may be defined as the direct calculation of all aspects of sound generation and propagation
from the underlying differential or integral equations describing fluid motion [48]. C"AA can he
applied to fields such as aeronautics, medicine, automotive engineering and architectural design.
The reduction of aireraft noise is one significant acronautical application for CAA [98]. The
United States has established a national goal of reducing noise levels from the levels of today’s
subsonic aircraft by a factor of two within 10 years, and by a factor of four within 20 years.
These noise reduction goals are important because air travel demand is expected to triple over
the next 20 vears, and because loud aircraft will not be permitted to land at many airports [3].

CAA is best used by an engineer or a scientist as a tool for analysis that compliments
theoretical and experimental techniques. A major capability offered by ("AA is the stimulation
of linear problems. A solution linearized about a known base flow of the unsteady Euler equations
with suitable wall and artificial boundary treatments can provide useful predictions of the noise
propagated from aireraft propulsion systems. Perhaps the greatest potential for CAA is the
solution of the non-linear problem of sound generation. The direct computation of aerodynamic

sound generation permits a very detailed look at any flow quantity. and the mechanisms of
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sound generation can be explored at a fundamental level [70]. This dissertation is restricted to
providing tools that can be applied to linear problems. Much of this work on methods for linear
problems will be directly usable or extendible to the nonlinear case, which will be considered in

later work.

1.1 Governing Equations

The linearized Euler equations in three space dimensions have been utilized extensively in this
work. Their development begins with the fundamental physical laws of conservation of mass.
momentunt. and energy. With the addition of thermodynamic relations, these fundamental laws
are used to derive the Navier-Stokes equations, which give a complete description of viscous flow
phenomena [9]. The Navier-Stokes equations are a nonlinear parabolic system, and do not have
a general solution [5]. Restrictive assumptions can be added to these viscous flow equations,
and a variety of other systems can be derived from them. Brief presentations will be made of

the Navier-Stokes equations, and of the Euler and linearized Euler equations [62].

1.1.1 Navier-Stokes Equations
Thie equations for flows in a compressible medium govern the sound generation and propagation
in a fluid flow. The Navier-Stokes equations in air are given by Batchelor [9] as:

Conscrrvation of Mass

dp  Opu;

ot " o, (1.1)

Counservation of Momentum

dpu;  Opujuj + pij

: = . 1.2
ot ar; (12)
Equation of State
p=plp.S)=pRT, (1.3)
Energy Egquation
DS DT 3T D 1 o oT
= et S /\.(__)‘ (1.4)

=y — =¢
Dt~ "Dt p )+p day Dy
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with
Ju;  du 2 Ouy
——— = L 4o
()l‘j dl‘; 3

)}

pij = bijp + p| I

These equations are used to obtain the pressure p, the density p. the velocity components
;. the temperature 7', and the entropy S. Particular flow conditions are specified by the
viscosity coefficient g, the specific heat at constant pressure ¢, the thermal expansion coeflicient
3 = —%(gTﬂ)P. the dissipation function proportional to the viscosity coefficient ¢, the thermal
conductivity of the fluid &, the gas constant R. the rate of mass introduction per unit volume
i, and the body force components per unit volume F;. In the case of isentropic flow (ie. with

constant. entropy). {— is constant. In this case. acoustic waves are propagated at the speed of

sound ¢, where

2 dp i g
clpp)=(5) =— =7KT.
ap g I

where 4 = 1.4 in air at 80° F.

1.1.2 The Euler Equations

The Euler equations are developed directly from the Navier-Stokes equations under the assunp-
tions that the flow is inviscid with g = 0. and that the heat transfer terms are negligible. Euler’s
Equations of fluid motion for an inviscid fluid are:

Continuity Fquation

47 (pu) =0, (1.5)

Conservation of Momentum
_ ] ) 1 :
ut+(u~v)u+(7)Vp:U. (1.6)

}
Equation of State

p=flp). (1.7)
where @ = (uy.ua.us) is the velocity vector. The general form of the Equation of State is

for isentropic flow. The continuity equation is the form of conservation of mass for the Euler

equations. Euler’s equations are a nonlinear hyperbolic systen.
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1.1.3 Linearized Euler Equations

The linearized Euler equations are derived from the Euler equations hy linearizing with a per-
turbation around a steady solution. The linearized Euler equations for the isentropic case in

three space dimensions can be written as:

0 () ¢ 0 ¢
e R X} (1)
ot dr dy J:  Ox
dr O dvde Op
— 4+l —+V—4+ W=+ —=0, 1.9
ot + dr + dy + d:  dy (1)
duw dw duw e dp
— '+ — -— 4+ — =0, 1.10
i or + Ay d:  d: ( )
dp Ldp _dp Op  du de o dw
— — 4V =4+ W =4 —+—+— =0, 111
e e + dy + dz  dx  dy * J: 0 ( )

where pand (u. v w) are the disturbance pressure and velocity, and where (I7, 1. 17) is the con-
stant mean convection velocity. This form of the hinearized Euler equations is non-dimensionalized
in terms of the Mach number or speed of sound. The linearized Euler equations with a constant.
mean flow are useful for modeling the propagation of an acoustic signal, but require that signal
to be specified. The determination of the sound sources from the underlying fluid dynamics will
require the use of the Navier-Stokes or nonlinear Euler equations.

The hnearized Euler equations in two space dimensions does not have any z derivatives or

velocity components, and can be written as:

u {0 1 u "0 0 u 0
i . 19, . J
— el +710 0 01—V} el+10 1 tf—1c1=1]101]. (1.12)
it dr oy

P | S VI p 0 1 Vv P 0

It is not possible to simultaneously diagonalize both of the coeflicient matrices in equation 1.12.
and reduce the system to separate decoupled systems. The linearized Euler equations in two or
three space dimensions are inherently multidimensional. with wave propagation along character-
istic surfaces. This property of the multidimensional systemis is significantly different from the
linearized system in one space dimension. where the linearized Euler equations may be decoupled
and solved by the Method of Characteristics. The MESA technique for algorithm development

{see Chapter 2) generalizes the method of characteristies by using exact local propagators. and
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[

correctly incorporates multidimensional wave propagation along characteristic surfaces.

1.2 CFD vs. CAA

In many aeroacoustic problems, the energy levels of the unsteady flow fluctuations and of the
sound perturbation can differ by from 2 to 5 orders of magnitude. This requires CAA algorithms
to have very high accuracy for resolving the sound and the fluid flow. The range of the human
ear is 20 Hz - 20 KHz, with peak sensitivity near 2KHz. This requires CAA algorithms to be able
to accurately propagate a wide band of frequencies. ('FD has typically been interested in steady-
state solutions, and has developed methods with high spatial accuracy. But acoustic waves have
both a wavelengtl in space and a frequency in time, and this requires CAA algorithms to have
high accuracy in both space and time. C'FD grids are often solution-adaptive to provide the
correct resolution in regions of varying gradients, but grid stretching or irregularity can distort
an acoustic wave if standard C'FD algorithms are used. This requires CCAA algorithms to have
unusually good accuracy when dealing with the geometry of complex objects or the details of
complicated flows. All of these considerations imply that C'AA requires numerical algorithms
with significantly greater capabilities than standard CFD methods.

Dissipation and dispersion are two properties of finite difference discretizations that are
commonly used to describe and compare finite difference methods. In order to illustrate these
properties, consider approximating a time derivative with a first-order forward difference. or
forward Euler differencing:

AF P+ A= F(t) dF

== N (), (1.13)

!

For the normal or Fourier mode FF(f) = ™' with frequency w, the first order forward Euler

discretization 1s

AF (zu.t((mAt_l) ] it PR S
—_—= = Juwe

N At 2i wat

(1.14)
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Tt -1

But sin(wt) = ‘——“,_,f—w so that for the normal mode F

9 jw At dF 5“1(57‘,31) -
o —_ 2 = — _
Ot @il dt wit

°

The Euler discretization reduces the amplitude of the derivative by the dissipation factor %,
and shifts its phase by the dispersive term ¢'#, where # = #2¢_ Higher frequency waves will be

distorted more than lower frequency waves [48]. The error introduced by a discretization will
depend upon the differencing that is used. but CFD methods generally have significant dispersion
and dissipation errors. Many CFD methods actually rely upon introducing significant error in
the form of artificial damping, sometimes introduced to overcome dispersive errors. or to force
convergence of a solution. Typical acoustic applications demand highly accurate simulations.
with very small dissipation and dispersion errors relative to the levels that have heen acceptable
in standard C'FD practice.

Most C'FD algorithms are developed in an essentially piecemeal way by choosing various finite
difference discretizations for the separate derivative terms in equations that are to be simulated.
The separate discretizations are chosen to work together to form a complete algorithm. but the
basic process tends to begin with a consideration of the separate derivative terms. The essential
issue, however. i1s not to approximate a particular derivative, but to approximate the solution
of a svstem of equations. The wave dynamics of a system are defined by the governing partial
differential equations, and it is useful to compare the solution of the original continuum problem
with the computed results obtained from a full discretization i both time and space. Solutions
are composed of superposed waves of different frequencies, and the separate waves can travel
with different speeds. The wave speed dependency upon the wave frequency is desceribed by the
dispersion relation of the governing equation. Constder the one dimensional scalar linear wave

equation
Ou du

W+(H.1' =4{. (L.16)

where ¢ is constant. The general form of the solution for this equation is
u(w. t) = u,(r —et), (1.17)

where w, () = u(r.0) s the mitial data at £ = 0. A Fourier mode solution of a partial differential
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equation has the general form

w(z, 1) = aeltwiHin) (1.18)

where w is the frequency of the solution, and 3 is the wave number, which is related to the wave
length A by 3A = 27. In the case of the linear wave equation, the general form of the solution

requires that the frequency and wave number of a Fourier mode satisfy the dispersion relation
w = —cil. (1.19)

so that a Fourier mode for the linear wave equation has the form
w(a t) = ael P (1.20)

with wave number 3 and frequency w = —ci3. There are dispersion relationships for solutions
of both continuum and discrete systems, and these relationships can be compared. Significant
effort has been expended to reduce discretization errors by increasing the agreement hetween the
dispersion relationships of the continuum system and the discrete approximation by developing
Compact Differencing methods in CFD [69], and the Dispersion Relationship Preserving methods
in CAA [105). In general. CFD methods have difficulty providing accurate phase speeds for
modal frequencies greater than 7.

The wave equation in a quiescent medium is isotropic, and propagates waves at the same
speed in all directions. A central difference scheme that is employed on a rectangular grid will
propagate wave information in the x-direction at speed % in the y-direction at speed %’{— and

in the diagonal direction at speed
(Ar)* + (Ay)?
2A¢ '

(1.21)

This wave speed distortion is further magnified when coniputing simulations in three dimen-
sions. Standard CFD techniques introduce this type of isotropy error which depends upon the
orientation of the propagating wave fronts relative to the discretization grid. In particular. CFD
methods that depend upon dimensional splitting can introduce significant dissipation in order
to glue together a multidimensional solution from separate intermediate one dimensional solu-

tions [74]. The accuracy required for CAA simulations, and the mherently multidimensional
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nature of wave propagation require ('AA algorithms that have low levels of isotropy error.

The standard CFD approach to handling curved wall surfaces is to map the physical domain
mto a rectangular computational domain with the curved surface mapped into a plane boundary,
or to use unstructured grids [106]. These are not the hest methods for aeroacoustic problems.
since they introduce inhomogeneities into the governing equations which could cause unintended
acoustic refraction and scattering. Methods for handling objects with complex structures or flows
with complicated local features continues to be an important area of C'FID rescarch. and is even

more significant for CAA.

1.3 Computational Approaches

The numerical simulation of wave propagation has a history. and various computational meth-
ods have been developed. Each approach has a unique set of properties, and it is difficult to
defend the idea that one method is best for all applications. A practical criterion for comparing
algorithms and their code Implementations is the amount of effort that they require to produce
a desired result. It has been shown that within a given class of numerical methods. higher order
methods tend to be more efficient [62]. Methods which are used in ('AA for linear problems

mclude:

MacCormack Methods These algorithms are standard C'FD methods, with dimensional split-
ting, and significant dissipation for stability. The original algorithm is second order in time
and space [75]. An early variant is second order in time and fourth order in space [41]
Recent work includes the development of higher order variants, including algorithms which
are fourth order in both time and space [118] and algorithms which are fourth order in
time and sixth order in space [53]. MacCormack methods are readily available, and have

been used for CAA simulations.

Compact Difference Compact Difference methods have been widely used in CFD but are
more recent than other standard C'F'D methods, such as the MacC'ormack methods. (‘om-
pact Differencing methods use global spline approximations to obtain local derivative data,
with some of the possible order of accuraey of the spatial interpolation sacrificed to obtain

better phase accuracy [69]. Compact Differencing methods are defined by an approach
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to spatial interpolation, and tend to use a Runge-Kutta type of time stepping method,
generally with fourth order accuracy in time. These methods can accurately propagate
relatively high frequency waves, compared to standard finite difference methods. and have

been used successfully in CAA simulations [19].

DRP Dispersion Relation Preserving methods are based on the fact that the wave propagation
properties of a system are implicit in the dispersion relation of the system [105]. Like
Compact Differencing methods. DRP methods sacrifice potential order of accuracy for
improved phase speed accuracy, and they use multistep time stepping methods of the
Runge-Kutta type. DRP methods sacrifice accuracy in time stepping as well as spatial
interpolation in order to optimize phase speed accuracy over a wide range of normal mode
frequencies [105], [35]. DRP methods are similar to Compact Differencing methods. but

have been used especially for CAA simulations.

The chief difficulty with all of these methods is that they are not efficiently accurate enough
for CAA simulations. The focus of this dissertation has been to produce automation tools for
developing a new type of algorithm for CAA. Many algorithm realizations have been produced
in both two and three dimensions. All of the algorithms of this new type are explicit single step
finite difference methods with the same order of accuracy in hoth time and space. This new type
of method uses central stencils, and has both dissipative and dispersive realizations. with from
the first to the 29 order accuracy in space and time in two dimensions and three dimensions.
Higher order realizations are possible but not. useful on today’s computers due to roundoff error
(64 bit precision). A particular suhclass of this new type of algorithm has exceptional phase

accuracy. or high resolution.
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1.4 Outline of the Thesis

As discussed earlier, 1t is desirable for both economic and environmental reasons to reduce the
noise emissions from commercial aircraft. Using a combination of theoretical, experimental and
computational approaches, many advances in noise reduction have been achieved. If the sources
of noise can be located. it may be possible to further reduce noise emissions by modifying the
propulsion system. However, finding the sources of noise generation in a turbofan propulsion
system requires a computational tool that has sufficient fidelity to simulate steep gradients in
the flow field and sufficient efficiency to run on today’s computer systems.

To meet those needs, the Modified Expansion Solution Approximation (MESA) series of
explicit finite-difference schemes were developed by Dr. John Goodrich to provide spectral-like
resolution with extraordinary efficiency [33]. [34], {35], [36]. [37], [40]. The accuracy of these
methods can. in theory, be arbitrarily high in both space and time. without the significant ineffi-
ciences of Runge-Kutta based schemes. These methods were originally developed in one and two
dimensions up to 11" order accuracy but were extended in this work to three dimensions with
up to 20" order accuracy. The essential idea behind the MESA schemes is to approximate the
solution of the partial differential equations instead of approximating the individual derivative
terms of the governing equations. The MESA schemes use multidimensional spatial interpo-
lation and the constructive procedure in the proof of the Cauchy-Kovalevsky theorem [30] to
develop a local series approximation to the solution of the partial differential equation system
i both space and time. The recursive Cauchy-Kovalevsky procedure has been used by Harten
et.al. [50] to produce a local third order method. The high resolution MESA methods use Her-
mitian interpolation and propagate the spatial derivatives as well as the solution variables of
mterest. Hermitian interpolation is widely applied to the solution of partial differential equa-
tions, as in Collatz [18], and has been used recently by Takewaki et.al. [103] and Yabe [124]
to develop the third order Cubic-Interpolated Pseudoparticle schemes which use and i)l‘()pagatf\
first spatial derivatives.

The complexity of coding the original form of the MESA schemes was. however, very high,
resulting in code that could not compile or took so long to write in FORTRAN that they were
rendered impractical. Three algebraically equivalent forms of the MESA schemes were imple-

mented and compared in this work in an attempt to find an optimal algorithimic implementation
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form. We call these three algorithmic forms the Finite Difference. the Spatial-Temporal, and
the Recursive Tensor forms. The Finite Difference algorithm form calculates new solution val-
ues as linear combinations of the old solution values which are known on the stencil. The
Spatial-Temporal algorithm form calculates new solution values as combinations of interpola-
tion coefficients which are obtained from the known data on the stencil, and which approximate
partial derivatives of the solution variables. The Recursive-Tensor algorithm form uses Tensor
Product spatial interpolation and Cauchy-Kovalevsky recursion for obtaining time derivatives.
These algorithmic forms are all mathematically equivalent realizations of the MESA methods.
but not equivalent with respect to FLOP counts. The Recursive Tensor form of the MESA
schemes has the advantage of being simple to code and compile. and it was found to be the rel-
atively more efficient form with respect to FLOP count per grid point per time step when high
accuracy MESA algorithms are used on small stencils, particularly for higher spatial dimensions.
A code generation tool was developed and written in Mathematica that automatically develops
particular implementations of the MESA schemes. in any of the three possible algorithms forms,
and then produces FORTRAN codes for the MESA scheme. This code generator creates all the
software necessary to numerically solve the linearized Euler equations on Cartesian grids in two
or three dimensional spatial domains. This tool is capable of generating algorithms of any order
accuracy. though 20" order accuracy appears to be the highest accuracy that is useful while
restricted to using 64 bit precision computer hardware. The code generator can create software
for a second order MESA scheme for two dimensional spatial domains with Cartesian grids and
embedded objects with complex shapes. The ability to treat complex geometric objects with
higher than second order accuracy on a Cartesian grid remains an open research problem in
numerical analysis.

A method was developed for treating solid wall boundaries with arbitrary piecewise smooth

th order accuracy on grid

shapes on Clartesian grids in two spatial dimensions, with up to 11
aligned houndaries, and with up to 274 order accuracy on generalized irregular houndaries.
The values of the grid points near the solid wall boundaries are found by evaluating a spatial
interpolant that is simultaneously consistent with the given wall boundary conditions and the
known data on the neighboring interior grid points. A mapping has been developed which

insures that a consistent spatial interpolant can be found for each grid point near a boundary.

Lagrangian-Hermitian forms of the spatial interpolants were shown to be the most efficient forms
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when using a Cartesian grid. In addition, the numerical stability of the MESA schemes with
wall boundaries depends upon the order in which the spatial interpolants are evaluated and a
procedure for the proper selection of the spatial interpolants stencil domains was developed.

Finally, an automated method for parallelizing these approaches on large scale parallel com-
puters is presented. This method 1s an extension of the code generation software written in
Mathematica and it creates code which uses the message passing interface (MPIl) standard for
the parallelization. Numerical experiments with the automatically generated parallelized codes
for the MESA methods have shown nearly perfect scalability up to 256 processors if a mod-
est minimal load per processor is maintained by scaling the test problem with the nunmiber of
Processors.

All these features are combined to form a turnkey code generation tool in Mathematica.
If the list of parametric curves commonly found in C'AD files is provided, this tool can then
automatically simulate the acoustical physics by replacing the traditionally labor intensive tasks
of grid generation. algorithmm development, FORTRAN coding. and wall boundary treatments
with automated procedures. The results of the automatically generated codes were validated in
several ways. First, the results were compared with the earlier results obtained by Dr. John
Goodrich in one dimension up to 11" order accuracy and in two dimensions with up to 5 order
accuracy. Second. the numerical solution was compared to the exact solution of the test problems
while increasing the grid resolution. confirming the order of accuracy of each MESA method.
Third, each FORTRAN subroutine has an analogous Mathematica module which ecnables the
validation of individual subroutines. The results from the automatically generated parallel code
were validated by comparing them to the serial results. and by comparing them to the known
analytical solution. for up to 23" order accuracy. Several orders of magnitude difference in
the efficiency of the methods were observed between the lowest order and higher order methods
using Hermitian data. This is consistent with the earlier empirical results of Goodrich [37] and
the theoretical studies of Kreiss and Oliger [63)].

A brief description of each chapter follows:

Chapter 2 will discuss the MESA scheme as it was originally developed by Dr. John
Goodrich. In particular, the scheme can be divided into two processes. First. a multidimensional
polynonial spatial interpolant is found that is locally consistent with the known data on a given

stenctl. Second. this locally defined analytical interpolant is advanced in time using the Cauchy-
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Kovalesvky process [126]. which generates the time derivatives that are needed for a Taylor
series expahsion in time.

Chapter 3 will discuss the automation of the three alternative forms of the MESA schemes:
the Finite Difference, the Spatial-Temporal. and the Recursive Tensor forms. Each of these
forms will produce the same numerical results, but will vary in their execution efficiency and
code complexity. A cost analysis comparing these methods is shown as well.

Chapter 4 will provide the foundation necessary for solving near boundary grid points. In
particular, an efficient data structure for representing all possible stencils on a Cartesian grid
and an algorithm for efficiently constructing it are shown. For small stencils, 11 1s possible to
significantly reduce the set of stencil configurations to under 70 cases by making some simphfying
assumptions and applying rotational and line symmetry. With this small set of stencils. 1t 1s
relatively simple to find spatial interpolants for all near boundary grid points by mapping each
near boundary grid point to the boundary. The spatial interpolant is consistent with the wall
boundary conditions at these mapped locations on the houndary. To ensure linear consistency.
the mapping must ensure that more than 3 grid points (mapped or interior) are never on a
line that is parallel to a coordinate axis. A complete mapping for 3 x 3 stencils in two spatial
dimensions is shown as well.

Chapter 5 discusses a method for finding a spatial interpolant that is simultaneously con-
sistent with the interior grid points and the wall boundary conditions at the mapped boundary
points. In particular. by forming the polynomial interpolant into its Hermitian-Lagrangian form.
the number of unknowns reduces to the small set of data elements contained within the near
boundary grid points. It was possible to create stable 24 order methods in complex domains
by carefully selecting the stencil domains for each spatial interpolant in a way that maxinizes
the use of interior grid point information.

In chapter 6 the code generator that solves the open domain probleni in two dimensions 18
extended to the parallel domain. The computational domain is divided using domain decompo-
sition. Messages are passed between nodes with the Message Passing Interface (MPI) using an
asynchronous communication implementation. Excellent scalability was achieved for nearly all
the MESA schemes with the small. higher order Hermitian methods showing the best parallel
efficiency.

Chapter 7 provides the numerical results for open domain problems in two and three spatial

NASA/TM—1999-209182



14

dimensions using MESA methods that are up to 29'* order accuracy. It was found that some of
these algorithms are actually more powerful than the computer floating point hardware (64 bit
precision). The performance of the method for handling complex geometric shapes in a Cartesian
grid was tested i a box that was rotated at many orientations relative to the Clartesian grid,
and 1 a circular geometry which had a Bessel function analytical solution.

Final conclusions are drawn in chapter 8 and directions for future research are given.

The appendices provide the numerical data from the results of chapter 7 and they provide
an example Mathematica code for the two dimensional FORTRAN code generator which includes
wall boundaries.

Throughout this work, each MESA scheme when applied in D spatial dimensions will be
denoted by ¢500 in which S represents the size of the stencil in one dimension and O represents
the depth of data on each grid point. In particular, there are (D4 1)(O+ 1)? data elements per
grid pomt. For example. ¢202 in two spatial dimensions, represents the MESA scheme which

has a 2 x 2 stencil with 3(2 + 1)? = 27 data elements per grid point.
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Chapter 2

MESA Propagation Algorithm

Development

The MESA method for algorithm development is presented in this chapter, along with a brief
discussion of properties of algorithms developed with this method i two space dimensions (see
[34, 35, 37]). The acronym MESA stands for Modified Expansion Solution Approximation.
and the method is based upon the use of (auchy-Kowaleskaya expansions [126] for locally
approximating the solution of a system of partial differential equations. The MESA miethod can
be viewed as a two stage process of local interpolation to known data, and then time evolution
or propagation of the local spatial interpolant. These two algorithm stages are tied together
by the use of Cauchy-Kowaleskaya expansions for locally approximating the solution in space
and time, or equivalently. for obtaining time derivatives in terms of space derivatives. Data is
typically known at a single time level. so that the numerical algorithms generally are explicit.
The tine evolution is with local Clauchy-Kowaleskaya expansions, so that exact propagators
are possible for linear constant coefficient systems. If an exact propagator is used for time
evolution, then the properties of particular algorithm realizations depend upon the local spatial
interpotants that are used to supply initial data for the propagator. In particular. all of the
explicit algorithms which use exact propagators have the same order of accuracy in both space
and time. and they all correctly incorporate wave propagation along characteristic surfaces for

multidimensional syvstems. Local polynomial interpolants are used to approximate the Jocal data
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surface in multiple space dimensions, and the Method of Undetermined Coefficients is used to
obtain the local expansion coefficients. This approach 1s equivalent to using multidimensional
Taylor series expansions for the spatial interpolation, but it does not restrict either the location
or nature of the data that is used. as long as the linear systen for the expansion coefficients 1s
solvable. Two types of interpolants are used, with two distinct classes of algorithms as a result.
The first type of interpolant is ordinary multidimensional Lagrangian polynomial interpolation
with known solution data given on the local stencil. The second type of interpolation is Hermitian
mterpolation. and uses data from the solution and some of its derivatives. Algorithm realizations
have been developed in one, two, and three space dimensions with from first to twenty-ninth
order accuracy in both space and time, and using data from the solution up to its fourteenth
derivatives. In one. two and three space dimensions, the algorithms with the most unusual
properties have been developed using Hermitian interpolation. An emphasis of this dissertation
work has been the extension of these algorithms to three space dimensions, and the automation
of their creation and code implementation in hoth two and three space dinensions. Significant
1ssues were the comparison of the efficiency of the various algorithms. and an assessment of how
difficult they are to create and code, even with automated tools. These algorithms are actually

quite simple to implement if a particular approach 1s used as discussed later.

2.1 Spatial Interpolation

Multidimensional polynomial interpolation is used for the algorithms that have been developed
with the MESA method. If f(r.y) is a function with a two dimensional domain. then a general

order O polynomial interpolation form can be written as

@]

fley) ~ Zi.j:”(!(i.j).l'[y/. (2.1)

Note that the interpolation is defined in local coordinates, and assumes the change of coordinates
(r.y) =(r—2x..y—uy.). where (2., y.) is the center of the expansion in global coordinates. Note

also that for 1.y =0,1.....0.
L atif

—_—— 2.2
At awt iy (2.2)

ali, j) =
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The interpolation coefficients a(i, j) are obtained by the Method of Undetermined Coeflicients,
with the constraint equations obtained from expanding the interpolant to represent known data
on a specified stencil. There is some flexibility in choosing the data type and stencil layout,
subject to stability constraints, and in modifying the form of the local interpolant. subject to
order of accuracy constraints. The multidimensional interpolant includes the two separate order

O single dimensional interpolants

R )] .
F(r.0) Z:;)(l(i,())r'. £(0.y) ~ Z;:Ua(o,j)y, (2.3)

for expansion about (., y.) in 2 and y. respectively. The cross-derivative expansion coefficients
are necessary for multidimensional approximation, and include derivative terms from order 2 to
order 20. 1t has been observed in the past that cross-derivative terms improve stability. isotropy.
and accuracy [34]. Synunetric multidimensional interpolants are advantageous in algorithms
for the linearized Fuler equations because these equations propagate information from every
direction along characteristic surfaces.

Biquadratic interpolation on a uniform mesh is a simple example of two dimensional poly-
nomial interpolation. and has heen used for previous work with the MESA method. T this
case,

“

Sy alig)ry (2.4)

i,j=0

If a central 3 x 3 square stencil is used, with expansion about the central stencil point and
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function data given at each point. then the constraint equations are

fl+h +Rh) = ago + ajoh + aoph® + (ag) + a11h + as Y + (ays + ayoh + asah?)h2,
f(+h.0) = ayo+ aiph + awgh®

fl+h. —h) = ago+ aioh + asch® — (ay +ayh + ash*)h + (ags + ay2h 4+ ash*)h?,
FO.4R)Y = ago+ anh + agah”,

f0.0) = aqo

FlU.=R)Y = ago — avrh + agah™.

f(=h.+h) = ao—aroh + asph® + (ao) — ayth 4 as h®Yh + (ags — ap2h + asah*)h2,
J=h.0) = au — aroh + asgh?

fl=h.—h) = ap — aroh+ asph® = (@01 — apih + as b )Yh + (ags — ajoh + asah?)h®.

(2.5)

where the function values on the left are assumed known. and the expansion coefficients a;; =
a(?, j) are to be determined. Note that a uniform mesh size h = Ar = Ay is assumed, and that
this is not a necessary restriction. Note also that the biquadratic interpolant has the fourth order
aaa term. For any polynomial interpolant, the system of equations for the expansion coeflicients
can be written in the general form

SA=2Z, (2.6)

where Z is the vector of function values known on the interpolation stencil, A is the vector of
unknown expansion coefficients, and 8 is the matrix of expansion data from the form of the
interpolant and the geometry of the points in the stencil.  Any multidimensional interpolant
must have a set of coefficient equations that can be solved, and this is the essential constraint
that limits the choice of interpolants, stencil geometries, and expansion points,
Multidimensional polynomial interpolation has some flexibility in the choice of the stencil
that is used. with a concomitant variation in the form of the interpolant. A bhiquartic interpolant

can be written as

(a4
-1
~—

ey =Y aligity, (

with function data specified on the twenty-five points of a 5 x 5 stencil. and with various pos-

sibilities for the expansion center. A different possible fourth order interpolant in two space
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dimensions is
N ~ . 2 3 .4
fle,y) = (ayo+ aror + asqe” + azer® + agpa”)
) 2 3 4

H(apy + ajpr 4+ anrT 4 an 2t + agaty
+(ao2 + ayox + azox® + agar® + agar’t )y’ (2.8)

2
+(aos + arzr + aszr?)y’

+(apq + arax + (t241‘?)y4-

This interpolant could be used with expansion about the center of a twenty-one point stencil
that is obtained by dropping the four corner points of a 5 x 5 square stencil. In general. there
are more choices for interpolants and stencils as the order of the interpolant increases. In the
context of algorithm development for the linearized Euler equations, a single step algorithm of
order O in both space and time requires a spatial interpolant that includes all cross derivatives
through order O.

Multidimensional polynomial interpolation also has flexibility in the choice of the data that
is assumed to be known at each grid point. Hermitian polynomial interpolation uses various
derivative values as data. with constraint equations from values of the function and its deriva-
tives. As an example. consider a 2 x 2 stencil with four grid points located at the corners of
a square, and with data for f. f.. f,. and f., at each grid point. Note that there are sixteen
degrees of freedom of known data, with four along each grid line in either the o or y direction.

A suitable third order interpolant for this choice of grid and data is
flegy = Y ali )ty (2.9)

For this local approximation of f. second order interpolants for f, and f, are given by

i 3 . .o i ;
7;{7(.1',_1/) ~ Zz‘:LJ‘:o’”‘(’-J)"' Ty
(2.10)
: 3 L
Loy = Tilgjardati ety
and a first order interpolant for fr, is given by
O f 3
z‘).z%)g oy Zl ijai )ity Tt (2.11)
)=
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In this case. with expansion ahout the stencil center at the point in the middle of the stencil

square, the constraint equations for obtaining the expansion coeflicients with function data are,

) ; 2 h
S(+5%.4+2) = ap+ank + anl + azol + (ap1 + ay B + anr B +(131 )5
[ h* Ry R® } K h?
H(ans + a5 + ave T + azeg )5 + (03 + a3z + an3y +asy
Lk o J Y
Si+5.=%) = ap+awd +anl . 5 — (e +an g +U'>1— + a3 %)
h i AR A n*
Haps + ar25 + a2y + “.3"1_)7 — (aos + a1l + assts "+ a3z
1 [ _ h R R* h h? Y
S(=5.+5) = aw—aws+awT —azog + (@ —ang +an g —ay )i
h h hyh? e
+lae — ayns + awy — ase g )4+ (ans — “1; 7+ (a3 — as3
h h ! h R he h*yh
f(—?—?) = (1(]()—(11():—1+(lg(')-%——(13()]8 ((111 —(1“ 0 +(l)]T—(I3] )8 ]j
h? Ry ) ! [
gy — aps i+ as s — aze o) — (ags — a3y + (123'— — ayy ;

h)

Wt

N

;
)'?.

(2.12)

and three sets of four equations with similar sigh patterns are obtained from the derivative data,

with the data for f, leading to the four constraints

SR T = aeE 20008 + 3a30 s F (ary £ 200 b 4 Bag )0

(a2 £ 2a% + 3az. _)hT:F(ﬂl.‘ii'zu’_’S%+3(’33%i)%*

the data for f, leading to the four constraint equations

L 25 F8) = Han +anb +any +”s1 o)

h-

b N
’(ﬂu'+(111 + avay + az :?) +3((lu3+(113,+fl:5 +(133 )T'

and the data for f,., leading to the four constraint equations

(£ Fh = +(('11i'2“21{_-1+3(131”7:)

F2uys £ 2a-- —i + iugn

) + 3ays £ 2angd 3+ Jagzl )'i{.

(2.13)

(2.15)

These sixteen equations for the sixteen unknown coefficients are nonsingular. and can be repre-

sented m the general form of Equation (2.6).
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Polynomial interpolation is expensive in multiple dimensions [31]. and other interpolants such
as pilecewise polynomials [26] are frequently preferred. For the purpose of providing local data
approximations in algorithms for the linearized Euler equations, the local order of accuracy of the
interpolation is extremely important, since the properties of the MESA type of algonthms are
derived from the interpolant. In an earlier design, the interpolating coeflicients were computed
only once for a particular stencil. and then used repeatedly throughout the spatial grid at every
time step, so that the derivation of the interpolants and the computation of the coefficients was
amortized over much use. Later, a method analogous to divided differences [89] was found that
for higher-order MESA schemes is actually more efficient and is discussed later. Furthermore,
the use of local polynomial expansions grounds the MESA algorithin development process n
the tradition of finite difference methods.

Posing and solving the interpolation problem is cased considerably by automation with the
use of Groebner hases for mathematical ideals formed by polynomials [21]. In an earlier design
this automation solved the entire multidimensional interpolation problem symbolically with
the disadvantage of creating large equations. especially in three dimensions. Later, the use of
Groebner bases solutions was necessary only for one-dimensional interpolants. This improvement
reduced equation size from millions of lines of cade to dozens in the 29" order three-dimensional
case. A better method will be described later based an tensor products. The general problem
of multidimensional interpolation is an active area of research and will be discussed further in

chapter 5.

2.2 Temporal Evolution

Partial differential equations are categorized as elliptic, parabolic. or hyperbolic depending on
the higher order derivative terms. Systems of partial differential equations are categorized 1n
the same way. Solutions to equations of each category have unique properties. and numerical
methods best suited for their simulation generally reflect these properties. The linearized Euler

equations are of hyperbolic type, with propagating waves as solutions.
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In one space dimension, the linearized Euler equations are a hyperbolic system, with

e rou ap _
GetlUgr+3E = 0,
{2.10)
ap rop i) .
FHUL 4L = 0,

where u and p are the velocity and pressure of the acoustic disturbance, and where {7 is the
constant mean convection velocity. This system is written in nondimensional form, with [7
given in terms of the speed of sound, or as a Mach number. The one dimensional system can
be diagonalized in terms of the Riemann variables w) = w + p, and ws = v — p. The evolution

equations for v and p are added and subtracted to give the equations for w; and w». with

S (U+ D2 = 0,
(2.17)
G2 4 (-8 = 0.
The general solution of these equations is
wilr Yy =wi(r =7+ D), wala ) = wa(e = (17 = 1)), (2.18)

where wi(2,0) = wy(x) and wo(r, ) = wa(a) are the initial data for w, and w.. Notice that the
solution for w; is constant along the line » — (" + 1) = 5, and that the solution for w+ is constant
along the hine o — (I" = 1)l = £. These two lines are the characteristics for the one dimensional
systenn. and information is propagated along them with the characteristic velocities {7 4+ | and
[ — 1. respectively. Each Riemann variable solution is determined entirely by the data for that
solution variable that 1s propagated along its own characteristic. The solutions for v and p are
obtained as linear combinations of the solutions for wy and ws, so that w and p are determined
by data from both w) and w» that is propagated along each charatcteristic. This analyvsis and
solution process is called the Method of Characteristics, and it is used for the development of
numerical methods.

In two or three space dimensions, the linearized Euler equations are hyperbolic but they
cannot be transformed into a related system that can be decomposed into separate equations,

they are nondiagonahzable. In two or three space dimensions, information is not propagated
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from a finite number of directions along characteristic lines, but from every direction along
characteristic surfaces. It is commonly observed that a stone thrown into still water creates a
ripple or wave that is an expanding circle. If this expanding circular ripple is viewed in the two
dimensions of the water surface, and simultaneously in the third dimension of time, then the
location of the expanding wave disturbance is seen as a cone. This cone is the characteristic
surface for the wave dvnamics of the problem. In this example, the wave front is expanding in a
circle, which shows the transmission of information in every direction away from the signal source
at the center of the disturbance. The inverse view is from a particular point as information arrives
to evolve the solution in time. Just as information is radiated in every direction by the governing
dynamics, it is also received from every direction. Wave dynamics for nondiagonalizable systems
in more than one space dimension are inherently multiple dimensional. and algorithms for their
simulation can usefully incorporate this property. This is not the normal practice. but 1t is
fundamental to the MESA method for algorithm development.

The problems typically encountered in acoustic simulations are purely initial value or initial
boundary value problems. The purely initial value or Cauchy problem assumes an infinite domain
with no surface boundaries. and the data for the problem is given in the form of initial values
specified throughout the domain at a particular time. Initial boundary value problems mclude
surface boundaries, and require hoth initial data throughout the domain and data specified
throughout time on the boundary surfaces. Except at or next to a houndary surface, both types
of problems can be seen locally in space and time as Cauchy problems. The (tauchy-Kowaleskaya
Theorem gives conditions that guarantee a local solution for (‘auchy problems [126] . If the
governing systemi has analytic coefficients. and if the initial data is analytic and is defined on
an analytic surface in space and tinie, then a local analytic solution will exist. Polynomials are
analytic. so a linear constant coefficient system certainly has analytic coefficients.  Any data
on a discrete grid can be viewed locally as analytic, since it can be interpolated locally with
polynomials. A flat hyperplane defined in space and time by a constant time value is certamly
analytic. Consequently, if a local polynomial interpolant at a fixed time on a given stencil is
taken as initial data, then the linearized Euler equations will have a local analytic solution in
space and time.

An analytic function can be represented as a convergent power series. and the Cauchy-

Kowaleskaya Theorem shows how a local series solution can be constructed. The key issue
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in developing power series solutions for Cauchy problems is to modify a general Taylor series
expansion by using the governing equations to transform time derivatives into space derivatives.
The linearized Euler equations give the first time derivatives in terms of first space derivatives.

In two space dimensions

du LOu LGu dp
- ::'—(‘7—— —" - Ti-, (2.19)
ot dx dy  ox
v _de v 0 ,
Qo (2.20)
ot dx dy Iy
dp L0 .d du v
il I IR (2.21)
ot da dy dr  dy
Higher order derivatives with time differentiation follow from these equations. such as
Au By Cd%u p
AL (L L (2.22)
atdr = dydr  Ox°
and
P _pr 22 a'p
TR orit Gyal | ordt
e rdu - du ap
= U (-r oy )
-9 T - du ap IO
Vg (g - va - ) (2:23)
& rdp - Yp & v
—m (v o)

= (P¥ 4 1)Ly goopry i g R 9% Ty gy 0
ar

drdy Bl driy are drdy’

with similar forms for other derivatives if they are needed, and where {7 and 17 are constants.
The procedure of transforming time derivatives into space derivatives by means of the governing
system of equations has been applied before in the development of numerical methods [50].
Note that the mixed 2f and the second order ¢ derivatives are both expressed as combinations of
second order spatial derivatives. For a first order linear system witly constant. coefficients such
as the linearized Euler equations. the terms with time derivatives are expressed as purely spatial
derivatives with the same total order. As a consequence of this. if the initial data is a finite order
polynomial, then the order of the time derivative terms that occur in a local analytic solution

can only be as high as the highest order pure space derivative terms. This tmplies that if the
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initial data is a local finite order polynomial, then the local convergent power series solution is a
finite degree polynomial in space and time. Polynomial closed form exact solutions are possible
for the linearized Euler equations in multiple space dimensions.

Consider now the development of an algorithm for the linearized Euler equations in two space
dimensions with a 3 x 3 central stencil. The biquadratic interpolant 2.4 is used to approximate u,
v, and p on the stencil. Recall that the biquadratic expansion includes the fourth order coefficient

2 Jderivative. Consequently, up to fourth order time derivatives are

that corresponds to the Friogt

possible for the local analytic solution with this initial data. The general solution can be found
by the Canchy-Kowaleskaya procedure. or in the following equivalent manner. (‘onsider local

expansions in space and time with the form

2 A=(itj) e Ci e
pala oy t) = Zi,j:() k:i;ﬂ)1’(’~J~A')J'1!flik«
walwoyt) = SF STy i k) 2R (2.24)
3 d=i+j) e o C e
valr g t) = 350 1\.:(,1+J)I"(I,j.]\‘)‘l'zy']:]‘,

where time terms up to fourth order are included. The terms with & = 0 correspond to space
derivatives, and their values are obtained from interpolating the data on the stencil. The lin-
earized Fuler equations are applied to the expansion forms 2.24. resulting in three expressions
in o, y. and {. Since a solution forn is being sought. the equations are forced to be satisfied uni-
formly in all three variables. This requirement results in relationships that define the expansion
coefficients with & # 0 in terms of the coefficients from the spatial interpolant. and results im an
exact local solution in space and time, just as if the Cauchy-Kowaleskaya procedure had been
used. Because the local approximations in space and time are exact solutions to the linearized
Euler equations. they correctly incorporate the wave dynamics of the system. This includes
propagation along characteristic surfaces as long as the entire base of the characteristic surface
is inside the footprint of the stencil for the spatial interpolation. The entire local approximation
in space and time is not needed in order 1o calenlate the evolution of the solution at the stencil
center. A solution value at the new time level in the stencil center can be obtained by evaluating

the local space and time approximations at (w. y.f) = (0,0, k) in local coordinates. where b= At
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1s the time step size. If spatial interpolation is with the biquadratic 2.4, then the resulting exact

propagator algorithin is

n+l
Pij

n+41
l’v‘j

n+1
vy ]

pa(0,0, k)
Poo
+k(=Mypor — Mypio — w10 — voy)
+AH((1 4 M )poz + Me Mypyy + (14 M2 )pay
+Myuyy + 2Meuwag + 2Myvga + Mpvrq)
AR =My 4+ MM )pra — (My + M2M,)pay
—(% + :'\[;’]ul-_, = 2M Myusy = 2M Myvgs — (% + M2)vay)
FRY( A+ MZ+ ME+ MM )pas
+(:‘“—;;\[_,. + 2;11!;\1;)11'_9 + (%1\1y + 2M A o).

wa(0.0. &)
Uy
+h(=p1o — Myuor — Myuy0) (2.25)
AR Mypry + 2Mepzo + My oz + Mo My + (14 AL use + Legg)
FAB (3 4 M H)pra — 20 My por
— MM urs — (My + MMy sy — Myeia — Mova))

AN EM, 4 20 My ) pon + (3 4 M7 4+ MM g + 2M M van),

va(0.0, k)
'no
+h(—=por — Myvoy — Mevyg)
HhA2Mypo2 + Mepiy + Suny + (1 + M7 Yega + Mo Myvy + M ew)
HhH=2M Mypra = (3 4+ M2 )por
—Mywir = Mowsy = (M + Mo M7 Yers — MZMyvsy)

FAHEM, + 20M2M ) pao + 20 Myuss + (L + M2 + ;\Iﬁf\];)rgg)‘

Notice that algorithm 2.25 has the form of a time expansion with terms up to 1. A second

order Taylor series expansion in time is obtained if algorithin 2.25 is truncated by dropping the

o
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O[k3] and O[k*] terms. The second order time expansion with a symmetric 3 x 3 central stencil
can be viewed as a two dimensional Lax-Wendroff method [68]. The Lax-Wendroff method does
not include the higher order expansion terms that are required to properly propagate the local
second order multidimensional spatial interpolant. If both methods are written in the form of
Finite Difference algorithms, as weighted sums of the data values on the stencil, then they will
both require the same number of multiplies and adds.

The particular algorithm form 2.25 is an example which shows an application of the general
MESA method which can also be extended to arbitrary orders of accuracy with different inter-
polants. If local polynomial interpolants are used with just the solution data assumed known on
a symmetric multidimensional stencil, then the resulting numerical algorithms are stable if [34].

& 1

A=< . 2.20
b= 1+ max{|l7], |V} (2.26)

Algorithms with exact propagators can also use Hermitian interpolants. but the resulting al-
gorithms are unstable if central stencils are used. This problem can be avoided if alternating
grids are used, with a time separation of % and a spatial offset of ’_—ﬁ in both » and y. For these
Hermitian methods on staggered grids. the data at each grid level is a real solution. and the
numerical algorithms have the same stability limits as the methods which use only the solution
data on central stencils. The numerical methods that have been derived for one or two spatial

dimensions with Hermitian interpolation have shown spectral like accuracy [35, 37].
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Chapter 3

MESA Propagation Algorithm

Automation

It is necessary to automate the development of higher order numerical algorithms using the
MESA method because of the growth in development complexity as the order of accuracy in-
creases, The efliciency of the higher order algorithms compensates for their complexity.

Perhaps one reason why commonly used numerical schemes are limited in their accuracy in
real applications is that higher order schemes and their houndary treatments are too complicated
to develop without automated assistance.

For example. the leading computational aeroacoustics algorithms typically use Runge-Kutta
methods for computing time derivatives. However. deriving high-order Runge-Kutta methods is
no easy task. The first difficulty is in finding the so-called order conditions, which are nonlinear
equations,  The second difficulty 1s in solving these equations; There is generally no unique
solution, and many heuristics and simplifying assumptions are usually made. In addition. there
is the problem of combinatorial explosion. For a twelfth-order method there are 7813 order
conditions [123].

A strength of the MESA method for algorithm development is its natural adaptability to the
use of computer algebra systems. The method provides order and structure which can be auto-
mated. The symbolie differentiation and polynomial syster solvers of computer algebra software

packages (Mathematica is used in this work) are some of the basic features the automation of
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the MESA method depends upon. Mathematica also provides the capabilities typically associ-
ated with LISP (LISt Processing language) in which lists of symbols may be data, functions, or
both simultaneously. This duality of symbol definition enables the automated FORTRAN code
generation utilized in this dissertation.

This chapter will address the automation of the MESA propagation scheme without wall
houndaries. 'The balance of this dissertation will build upon this capability by addressing the

incorporation of wall boundaries with complex geometries into the computational domain.

3.1 Spatial Interpolation

The first of two steps required for the MESA scheme discussed in the previous chapter is solving
the spatial interpolation problem. Two methods for its automatic solution will be discussed. the
General Form and the Tensor Form. In three dimensions spatial interpolation using the General
Form was a failure; it simiply took too much time using today’s technology. It was possible to
generate a 202 algorithm in about a week on a fast workstation hut the number of equations
overwhelmed all compilers. even the CRAY s FORTRANY0 compiler. Fortunately. the Tensor
Form not only greatly simplfies the solution of the spatial coefficients, but it is actually more
efficient for the higher-order algorithms. However, the techniques developed for the General
Form are useful for understanding the Tensor Form and a full discussion of its development and

application will be presented. In addition. both method’s extensions to 3D are discussed.

3.1.1 The Interpolation Problem in 2D

The osculating polvnomial interpolation problem solved in this work is defined for an vV x N
g POl | 1
grid region (see figure 3.1) with data at each grid point that contain the following scalar data

up to order 2D at each grid pomt:

G
'——...—.vl,‘/:(l,_]:o.l ..... D) (-;1)
daetdyl

where f(r.y) € C?P is defined in 2 and known at the grid points of the stencil in figure 3.1.
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Figure 3.1: Square region Q of area ((N — 1) x 1)? with known data points indicated with dots

The form of the local interpolating function defined over each stencil domain will be:

fey) =3 alij'y (3.2)
i

The coeflicients a(i. j) are determined by solving the linear system formed by the list of inter-
polators 3.2 evaluated at each grid point in the stencil. This linear system was discussed in
section 2.1 and is represented as:

SA=2Z2 {(3.3)

The unknown coefficient vector A needs to be solved symbolically. Each coeflicient will be
a linear combination of stencil data from vector Z. The vector Z contains algebraic variables
as opposed to numerical data. This information will be used later to develop a finite difference
scheme for time advancing the stencil’s center grid point primitive variables and their spatial
derivatives. Since this same stencil will be applied to every grid point in the domain, the actual
data values will change: Hence it is necessary to symbolically solve for the vector A.

The osculating polynomial interpolation system 3.3 can be solved in two ways. depending
upon the stencil’s properties. If the stencil is on an irregular grid then it is necessary to use a
less efficient General Form described next which when arranged into a particular form, can be
more efticiently solved. The algebraic representations of these more efficient forms are necessarily
complicated by notation and do not provide insight into this discussion. A clearer understanding
1s provided using the pyramid mneumonic discussed next. If the stencil is on a uniform Cartesian

grid however. the far more efficient Tensor Form method of spatial interpolation can he used.
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But first, the General method will be addressed as this provides insight into the Tensor Form

method to be discussed later.

3.1.2 Pyramid Representation of Basis Coefficients in 2D

It is possible to represent the coefficients a(i.j) of equation 3.2 in a pyramid structure that
resembles Pascal's triangle like that in figure 3.2. Each pair of numbers in the pyramid corre-
sponds to the pair (i, ). The figure shows the pyramid number 22 corresponds to coefficient
a(2.2). Numbers larger than 9 may be represented with hexadecimal digits or some larger num-
Dher system. In figure 3.2, the first number of the pairs starts at 0 at the top of the pyramid
and increases at each level by proceeding down and to the left. The second number in the pairs
increase down and to the right. Each horizontal slice of the pyramid contains coeflicients rep-
resenting binomial basis terms of the same order. For example, the level designated by D =1
represents a(3,0). a(2,1). a(1.2), and a(0.3) - all of which represem 34 order derivatives and
multiply a 3" order binomial term a(i, jyaty for all i, j > 0 such that i+ j =3.

It is also a property of this pyramid that the set of binomial basis functions represented by
the pyramid are of overall minimal order. For example, it would be possible to replace the pair
30 with A0 which represents coefficient a(10.0) and still have a consistent linear system 3.3.
But then a gap would form in the pyramid and extra multiplies would be incurred since the
interpolant now has the term a(10,0)r!? which has ten multiplies instead of the three in the
previous case. Also, the time advance of the primitive variables using the MESA scheme requires
the a(3.0) spatial coefficient.

In figure 3.2 the coefficients form diamonds (diamond-group) of N? elements shown as a
dashed diamond. The MESA scheme’s stencil dimensions will determine the size of the diamonds
in the figure. If the coefficients represented by the numbered pairs contained within a diamond-
group are selected and placed in a vector Ag. Then it is possible to symbolically solve these
coefficients independently of the other coefficients. The coefficients will be linear combinations
of the other coefficients in the pyramid and linear combinations of the stencil data of vector 2
in the right hand side of linear system equation 3.3.

An even smaller set of coefficients can be solved at a time using the ordering shown in
figure 3.3, This case is for a 2 x 2 stencil. with minimal cross-derivatives. and all mintmal
’l”‘

derivative terms up to the order on the stencil. The nuimbered pairs (coefficients) are
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ik 00 3,
10 01
20 11 02
30

2 12 03
40 31 13 04

50 41 327323 14 05
60 51 42 3B 24 15 06,
70 61,-52 43 i34 25 16 /07'\
80 71.,62'\53 44 35 26 U7 08>
90 81 72 63> 54 45 36 27 “\18/ 09

91 (\73/’ 55! 37 R™V19
Is a diéinond-group Not a diainond—group
a(2,2)

Figure 3.2: Minimal cross-derivative pyramid representation showing diamond sub-structure for
N=2and D=1
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10 01
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40 31 22 13 04
50 41 32 23 14 05
60 51 42 33 24 15 06
70 61 52 43 34 25 16 07
80 71 62 53 44 35 26 17 08
90 &1 72 63 54 45 36 27 18 09
91 73 D) 37 19

Figure 3.3: Pyramid representation showing line sub-structure for N =2 and D =4

selected from this pyramid in groups of two, by following the darker line from the top to the
bottom left in which the right number of each pair is equal to 0. Then following the light line
in which the right number of each pair is equal to 1 from top to bottom left. Repeating this for
the lines containing pairs with right numbers equal to 2. 3. 4, 5. 6, 7. 8, and 9, in that order.
In this manner. all the unknown coefficients may be solved in 30 groups of 2 which require
the solution of 30 simple 2 x 2 matrix systems. Compared to the fifteen 4 x 4 matrix systems
from diamond-groupings, and compared to the one 60 x 60 matrix systems with no grouping,
it is vastly more efficient 1o use line grouping when symbolically solving the linear system of
polynomial equations 3.3.

To obtain better accuracy and isotropy. all the cross-derivative terms are used as shown In
figure 3.4. Again, line grouping is used for efficiency. Define the vector A inequation 3.3 by using
the coefficients in the order found by traversing the pyramid in line groups. Now. with A defined.
the matrix & will be completely defined when the vector Z is defined. Figure 3.4 provides another
mneumonic for ordering Z. The smaller square underneath the now familiar coefficient pyramid
(square in this case). provides derivative information {referred to as the derivative pyramid).
Each diamond in the coeflicient pyramid is linked to the diamond of the same topological location
in the derivative pyramid. For example, in the case shown in figure 3.4, there are 25 diamonds
in both pyramids (squares). The diamond in the coefficient pyramid containing numbered pairs
42.43.52. and 53. corresponds to the diamond in the derivative pyramid containing the single
numbered pair 21. This correspondence will he used to define vector 2. The first number of
each numbered pair in the derivative pyramid represents the order of a derivative with respect

to the x-axis direction: Aud the second number of the pair represents the order of a derivative
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with respect to the y-axis direction.

The stencil corresponding to N = 2 is also shown in figure 3.4. The numbers in the stencil s
grid points show the ordering in which the spatial interpolants 3.2 are evaluated. Tt is the
combination of the sequence of the stencil locations and the line groups within the derivative
pyramid which determine the precise ordering of the elements in vector Z. If N were larger, the
number of elements in the diamonds of the coefficient pyramid and the stencil size would increase.
But the derivative pyramid would still contain a single numbered pair per diamond. The larger
stencil would still use row-major ordering starting with the bottom row in the bottom left corner
of the stencil. The total number of diamonds would not change with larger N, but will increase
as D is increased. Larger N and/or larger D hoth result in more unknown coeflicients. a(i,j). The
number of coefficients (or degrees of freedom) determines the accuracy of the scheme, regardless
of the actual size of N or ). For example. N = 2 and D = 4 will produce the same accuracy
spatial mterpolant as N = 4 and D = 2. However, smaller N results in easier spatial interpolant
solutions and larger D results in numerical schemes with better resolution properties. But, very
large D values of ten or more can result in significant roundoff error on computer systems with

G-4-bit precision. This effect is well known when computing divided differences [89].

3.1.3 Polynomial Ideals and Solving SA = Z in 2D

The linear system of polynomial equations 3.3 for the interpolation problem can be written in
the form

I=<S8A-2Z>Cry 2] (3.6)

where Clr. y. 2] Is the space of polynomials in (. y. ) with complex coefficients. and where |
is the ideal defined by the Hermitian polynomial expansions associated with each grid point.
The tdeal I has a set of (Gréebner bhasis polynomials that can be used to solve for A. It has
heen shown that the construction of a Groebner hasis using Buchberger's algorithm for an ideal
generated by polynomials of degree less than or equal to d can involve polynomials of degree
up to 22 [76]. The complexity of constructing the Groebner basis can he dramatically affected
by the ordering of the idependent variables [21]. An optimization in the formulation of the
Hermitian polynomial interpolation problem dramatically reduces its complexity.

The order of accuracy of the two-dimensional Hermitian polynomial interpolator in this work
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Figure 3.6: Matrix & with grid size h. N=2 and D=1 solved by diamonds
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is based upon the size N of the stencil in one dimension, and the highest order D of the derivative

terms on the stencil in one dimension. The order of the spatial interpolator polynomial will be
ND+1)-1, (3.7)

where it is assumed that all single dimension derivatives up to order D and various combinations
of multiple-dimension {mixed or cross) derivatives up to order 2D are included as data at each
grid point. For example, an eleventh order scheme (N = 4, = 2) is possible on a square
4 x 4 stencil with solution data and first. second, third and fourth order (cross) derivatives of
the solution data at each grid point. In particular, a single grid point would contain 9 pieces of
information. namely:

aPm flay)

e Vs (r+s= Dy and D,, <2) (3.%)
datyt

or fle.y) frlry). for(roy). flaoy). fyy(eoy). foy(209) fery(roy) fryy (o y).and frryy (e, 0).

Solving the entire linear system by directly inverting & of equation 3.3 exhausts available
computer resources for even moderately sized problems. However, by rearranging the interpolant
basis matrix & it is possible to form invertible sub-blocks of size N x .V down the main diagonal
that markedly decreases the cost of inverting 8. In figure 3.5 an example coefficient matrix
S is configured using line-group ordering: And in figure 3.6 the same matrix S is configured
diamond-groups. The line-group sequence creates a matrix with more zeros in the bottom-left
corner of the matrix form for $ than the diamond-group ordering. For even N, the specific

ordering for the vector A of expansion coefficients a(1,j) is:

a(0.0).a(1,0),....a(N(D+ 1) = 1.0).a(0.1).a(1.1)... ..

a(N(D+1) = 1. 1).al0.2),........ aN(D+ )= LLN(D+ 1) — 1)
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The specific ordering for the vector Z of stencil data is described using the following pseu-

docode in figure 3.7:

let degree = D
let maxi = &
let index = 0
Jor dy = 0 o degree do
for) = -maxj to maxj do
for dx = 0 to degree do
fori = -maxi to maxi do
f (i £0) and (j £ 0) then
if (1 < Q) then
xcoord=i+1
else
xcoord=1
endif
if (j < 0) then
veoord=)+1
else
yeoord=)
endif
imdex=index+1
if N is odd then

_ a4ty f p=rroordh y=ycoordh)

Zinder = 0T rgdvy
else
Ziae = gty (e rroordh— I(;;jr:"';?)'d’—;':yy =yroordh— Iz:—z;;:—l % )
endif
endif
endforloop
cndforloop
endforloop
endforloop

Figure 3.7 Pseudocode for correct ordering of vector Z

The ordering of the vectors A and Z completely determine the form of the matrix 8.

The osculating polynomial interpolation function formed will be :

NiD4+1i-1 N(D+1)-1

fleoy) = Z Z a(i, jyr'y (3.9)

j=0 i=0
With the system of equations 3.3 formed in the proper order using the line group sequence,
it 15 now possible to efficiently solve the cocfficients i A, Starting with the first N equations
of the line ordered systemn 3.3, solve the first N coefficients in A. Then substitute these results

into A and solve the next N coefficients using the next N equations. Proceed in this manner
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until all the coefficients are solved for.

After all N2(D + 1)? coefficients of A are solved using the above implementation in Math-
ematica, they will be expressed in the simplest algebraic form as a linear combination of some
or all of the elements of Z. Mathematica is developing a parallel version of its software which
could be used in solving all line-groups simultaneously. In addition, much research is currently
being done in the area of parallel Groebner basis solution solvers in the field at large. These
developments will be useful for some of the irregular grid challenges encountered in complex

geometry interpolations.

3.1.4 Tensor Form Method in 2D

The difficulty of the General method just described is that 3D problems are too complicated to
solve using current technology. despite the efficiency of using line-group ordering. The length
of the algebraic equations produced by the General method for three-dimensional cases can
he over a million lines of code. The latter issue can be minimized by combining the spatial
interpolant coefficients directly into the full time advance form to reduce the problem to its
explicit finite difference form in which the evolved data is a linear combination of the stencil
data from the previous time step. In this explicit form, each data element in the stencil has
an equation associated with it that is manageable for low order schemes. This simplification
only applies to the constant coeflicient linearized Euler equations. If the convection velocity 18
constant then the explicit form reduces to a single constant for each data element in the stencil.
This process shifts the burden from the FORTRAN compilers to Mathematica, which can take
weeks to produce a single code with explicit finite difference formulations for 3D schemes higher
than third order. Moreover, the overall purpose of this research is to solve variable coefficient
and nonlinear Navier-Stokes systems; Therefore a better process is required.

The Tensor Form method never attempts to provide an explicit equation for each spatial
coefficient. Instead. the solution of the coefficients is expressed as a set of DO loops in FORTRAN
that must be executed at each stencil. In this form, it is considerably easier to compile the
resulting code and it improves performance since it reuses derivative information in much the
same manner as Newton's Interpolatory Divided-Difference algorithm [15]. This improvement
is discussed later and iCs advantage in three-dimensional applications is demonstrated.

The key idea of the Tensor Fortn method is to interpolate in only one-dimension at a time.
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The function and its derivatives orthogonal to the interpolated direction are interpolated first
to the mid-point of the stencil. Then these interpolated values are reused in another one-
dimensional interpolation in the next dimension. Finally, if its three dimensional problem. one
additional interpolation is performed that reuses the second interpolation results. At no time is
more than one-dimension interpolated.

For example. define a one-dimensional interpolating function of order O as :

O

fle)y =" a(i.0)’ (3.10)

=0

and let (x,v)=(0.0) he the center of the stencil.

In 2D, the order of accuracy. O. is determined by the number of data elements along one
row of the stencil minus one (counting only those elements whose derivatives are in the same
direction as the interpolation). A 2 x2 stencil has 2 grid points in either the vertical or horizontal
rows. In a horizontal row using the ¢202 MESA scheme, f, f,. f.. are the data elements at cach
grid point whose derivatives are in the direction of interpolation.

In this case the MESA scheme is 5™ order. (2 x 3) =1 = 5. and therefore so is equation 3.10.

The a(i.0) are solved in equation 3.10 using computer algebra as described earlier. and can
be solved in line-groups as well. An additional simplification is to divide the system into two
separate systems. one containing the even and the other containing the odd derivative coeffi-
cients. For example, the fifth order case can remove all the odd spatial coeflicients terms. (the

a(1.0) terms when 1 1s odd), by observing f(x) + f(—ux) removes the odd derivatives. Similarly.

afiar) _ afi—r)

o —— will remove the even terms. Each system is then solved independently for the

a(i.0) coeflicients In practice. 14" order or higher systems need to be separated into odd and
even sub-systems and these sub-systems need solved using line-group ordering.

After the linear system is solved. the spatial coefficients from equation 3.10. «{;.0), will be a
linear combination of the function, f(x) and its x-derivatives evaluated at the grid points in one

row of the stencil. If the origin is at the center of the stencil then

a(i, Q) = %‘—)—’(—)f—l(—:—) (3.11)

The function f(x) in equation 3.10 can represent any function including the v or z-derivatives
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of f(x), (f,. f:+). It is a one-dimensional function that could be applied in any row of the stencil

pir+dy

to interpolate f(x) anywhere within that row. Let 43 (7 j) represent the derivative Pyt

of the function f at grid point (ij) in figure 3.9. And assume the function being interpolated
. . . L . B . .
in equation 3.10 is %{,— Then for the third order ¢2o0l MESA scheme. the one-dimensional

interpolant’s spatial coefficients are found to be:

JO0.G) SO S0 RS )

(0.0) =
a(0.0) 2 2 8 8
=3 10000, j) 3 FOWL ) ) (L)
a(1.0) 20 2h 1 1 (3.12)
_ rll.dy) ).} f(1.dy) .
g Al LIV B A 9 )
2 h 2h
9 (0.dy) 0. ) (O dy) 1, : (1.dy) 0, N (1.dy) 1.j
«(3.0) = o)y 2y f ( i ( J)
h3 h3 h* h*

Ud.r-{-dy.“.rl T

where flaravi jy = Ty L. Notice that the spatial coefficients are related 1o the deriva-

tives of the function as:
I oY f(0.y)

(I(([.IU)I WT (313)

The (1)) coordinate system used to determine grid point locations depends upon the parity
of the stencil’s dimension in one row. Odd dimensioned stencils (3 x 3,5 x 5) have a grid point
in the center of its stencil and the origin of the (i,j) coordinate system is located in the center
of the stencil. Even dimensioned stencils (2 % 2.4 x 4) do not have a grid point in the center
and so the (i,j) origin is the closest grid point down and to the left of the center of the stencil as
shown on the right side of figure 3.9. In both cases however. the spatial interpolants coordinate
system’s origin is in the center of the stencil.

It is important that the local coordinate systemn be defined such that its origin is at the
center of the stencil. To see this, consider the following one-dimensional interpolation example.
Assume there are four collinear grid points labeled, fll, I, fr, and frr respectively. And we will

use a third order interpolant

fla) = Zu(i).r". (3.14)

If we define the center of the 4 point one-dimensional stencil as the origin (the left stencil in
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figure 3.8), then the a(i) coefficients are defined as:

a

GOfl — flI4+9 fr— frr

16
— (27 fl = Ul =27 fr+ fro)
24 h
—(fl—=fll+ fr— frr)
4 h?
—(=3fl+fU+3fr— frr)
G h3

Compare this to the new coefficients when the origin is on the 1 grid point as in the right

stencil of figure 3.8, the a(1) coefficients then become:

a(0)
a(l)
a{2)

a(3)

fl
—Bf+2fU~=6fr+ frr)
6 h
—(2fl—=fll—fr)
2 h*
—(=3fl+ fll+3fr— frr)
6 h3

(3.19)
(3.20)
(3.21)

(3.22)

When either of these formulations are evaluated at the center of the stencil, they produce

the same interpolated solutions. However, the Tensor Product method requires that the spatial

coefficients be directly related to the actual data on the grid. This happens when the center of

the stencil is used as the local coordinate system’s origin. For example, the second derivative of

f(x) evaluated at the midpoint of the stencil with the origin at stencil center is:

And in general,

a” F(0) g
0 = 2a(2)
a(l) = ()’f?()) !

(3.23)

(3.24)

However, when the origin is at grid point fl as shown in the right stencil of figure 3.%. the

second derivative becomes a linear combination of the spatial coefficients:
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Centered ORIGIN  Uncentered ORIGIN
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Figure 3.8: Spatial interpolant origin must be at center of stencil
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Figure 3.9: Stencil Local Grid Point Coordinate System (i.])

And it is not possible, using this formulation, to simply substitute function values with spatial
coefficients a key requirement of the Tensor Form method.
Notice that the variables dyv and j are undefined in equation 3.12. Changing variable dy

givy
('igdy

corresponds to creating a new one-dimensional interpolation function for interpolating mn
the x-direction. Reusing the spatial interpolant coefficients in this manner avoids the need to
use time consuming Groebner basis solvers for each function being interpolated.

In addition, another advantage of the Tensor form of the equations is they may be put into
a DO loop in FORTRAN. The y-derivative terms may then be interpolated in the x-direction
without recalculating the symbolic form of the spatial coefficients. Since the spatial coefficients
a(i.0) are restricted to the one-dimensional case, they are not nearly as complicated as the two

and three-dimensional spatial interpolant coefficients tend to be. This results in simple to design

FORTRAN code consisting of relatively small equations.
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Let s(iindex.dy,j) denote the spatial coefficient a(iindex,0) at row j when the function being

. . a9 B . . .
interpolated 1s 42°L  Perform the simple DO loop for an even dimensioned stencil:

yty
Do
Do[
Do
s[iindex.dyj]=a(iindex,0)
Jdindex.0,0]
dy.0.D]

JL-(N/2Y.N/2):
Figure 3.10: Loop to compute the S terms in 2D with even stencil dimensions

or for an odd dimensioned stencil:

Do[

Do[

Dol

s(index.dy.j)=a(iindex.0)

Jindex.0.0]

dy.0.D]

J-integerPart(N/2) IntegerPart(N/2)];

Figure 3.11: Loop to compute the S terms in 2D with odd stencil dimensions

and all x-derivatives of function f(x) at the center of the steuncil on each row is deter-

mined at the S locations as shown in figure 3.12. The variable s{iindex.dyj) is equal to

| Unnde.r-}-vly.““uj]
Tindr o' (-,J.nnde,.ydy

At this point. we still need the a(i,j) spatial coefficients from equation 3.9 at the center of the
stenctl (x.¥)=(0.0). To get this information, we will now interpolate the data at the S locations
to the 82 location in figure 3.12 using another one-dimensional interpolation.

We now create a one-dimensional interpolant function in the y-direction:

0

fly) =" a0y (3.26)

j=0

using the same procedures as was used 1o solve the unknown spatial coefficients in equation 3.10.
The unknown spatial coefficients a{0, j) in equation 3.26 correspond to the right most diagonal

starting at the top and going down and to the right in the pyranmid 3.4, For the 201 MESA
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Figure 3.12: Intermediate Derivative Information Storage Locations For c2d2 MESA

scheme, the spatial coeflicients are defined as:

f‘d'r'm(l‘,U) . ftdr,l)j(l" l) N h f(d.r.-l)(l“o) B /I ftd.r‘l)(," 1)

a(0,0) = : ,
2 2 8 5
—3 _f‘(d‘r‘(”(l.,()) 3 f'd'r'”)(jq 1) f(d.r,l '(IU) f(fl.r.l)('" 1)
a(0,1) = — _
2h 2 h 4 4
_f‘d.r‘,|'(,'.0) j'((i.l‘,]'(l" l) )
] y = 39
“(0.2) 2h + 2 (3.27)
2 fldr ey 9 fldroy;] (dr1ii g (dr )
a(0.3) = I : (¢.0) 2f . (2 )+ f "(' )+f .,(I )
h? II‘3 h= h?

These coefficients correspond to the y-derivatives of the function f:

1 (-)d.r~+j inder ”17 0)

a(0, jinder) = — —
J jindex! fapdryiinder

{3.28)

Notice that the variables dx and i are undefined and provide the same functions and benefits
in the y-direction as discussed for variables dy and j in the x-direction. However, the functions on
the right hand side of these equations are already known and are substituted with s(iinder, dy, J)

terms from the first set of DO loops the functions f and s are related by:

f(ii"‘i""'dy)(i,j) = s(iinderx. dy, jYiinder?) {3.29)

Substituting with s(¢inder. dy, j) instead of with s(iinder dy. j)tiinder!) has the effect of di-
viding the equations 3.27 by iindex!. This process actually circumvents division roundoff errors

which can seriously degrade the very high accuracy MESA schemes.
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In two dimensions, the variable i is constant since only the center of the stencil needs deriva-
tive information and the previous DO loops put the (f, f.. frrr) derivative information of the
functions f = f, f,. fyy in the center column at the S locations of figure 3.12.

Now it is possible to solve for all the spatial coefficients in the pyramid using another simple
set of DO loops that uses the s(iindex.dy,j) information. The substitution into equation 3.27
is done in Mathematica. Substituting one symbol for another is an important capability of
Mathematica and in this case significantly simplifies the solution of the two-dimensional spatial
coeflicients, a(i,). in equationl.9.

This final DO loop uses the one-dimensional interpolation in the y-direction to interpolate

all the required spatial coefficients at the center of the stencil.

Do

Do[

s2(iindex,jindex)=a(0 jindex) with fldrdrvii 5y substituted with s(derx.dery.j)
Jindex.0,0]

Jindex,0.0]:

Figure 3.13: Loop to compute the S2 terms in 2D

The s2(iindexjindex) terms correspond to the a(iindex jindex) terms in equation 3.9. Notice
that the problem of finding the spatial coefficients has been reduced to two loops in which

one-dimmensional interpolations are performed in first the x-direction. and then the v-direction.

3.1.5 The Interpolation Problem in 3D

The 3D interpolation problem is analogous to that described in section 3.1.1. The osculating
polynomial is defined on an N x N x N grid region with data at each grid point that contain

the following scalar data up to order 3D at each grid point:

Jrirkp oy

The form of the local interpolating function defined over each stencil domain will be:

fly ) =3 3" S ati kel s (3.31)
’ J k
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Figure 3.14: Spatial Coefficient Mneumonic for 3D with N =2 and D =1

The coefficients a(i, j, k) are determined by solving the linear system formed by evaluating
equation 3.31 at each grid point in the stencil for all data elements.

The representation of the spatial coefficients in three dimensions can be drawn similarly to
the pyramid in figure 3.4 as a cube in figure 3.14. Notice the top plane of the cube corresponds
to the two-dimensional spatial coefficients for the c2ol MESA scheme, if all the cross-derivative
terms are included. It is still possible to solve these spatial coefficients in sub-groupings as was
done in the two-dimensional case. The top plane of the cube in figure 3.14 of coefficients is
solved in line-groups first, then the next plane’s line-groups. and so forth.

The three-dintensional spatial interpolation problem requires the Tensor Form method since
the General method is slow. complicated. and results in equations that are too lengthy for

compilation.

3.1.6 Tensor Form Method in 3D

The Tensor Form method provides an efficient procedure for solving the 3D spatial interpolant
problem. and produces equations simple enough for today’s FORTRANS0 compilers. The Tensor
Form requires stencil data to be collinear in the x and y-directions though nonuniform spacing
is perniitted. Since only Cartesian grids are used in this work. the Tensor Form method is ideal.

For problems involving complex geometry however, it is necessary Lo revert back to the General
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method and solve in line-groups. However, it appears it may be possible to symbolically solve
all possible cases in a preprocessing step. If this occurs, then a long wait for its General method
solution may be acceptable since it will need to he computed only once. In addition, recent
developments in parallel Mathematica. parallel Groebuner basis solvers, and parallel computers
hold the promise of quickly solving the three-dimensional geometry cases with the General
method.

The Tensor Form method in three dimensions uses three sets of loops. one per dimension.
The computational savings arises from reusing the data from previous loops and interpolating
only in one-dimension at a time. The savings are significant in three-dimensions since a large
amount of data is reused and the three-dimensional spatial coefficients, a(i,j.k). in equation 3.31
are solved n one-dimensional slices.

As In the two-dimensional case. define a one-dimensional interpolating function of order O

[¢]

fle) =" ali0.0)' (3.32)

=0

with its coordinate system’s origin always at. the center of the stencil.

In three dimensional problems, the order O is the number of data elements along one row
of the stencil cube i the x-direction that are not a y-derivative or z-derivative, minus one. A
2 x 2 x 2stencil has 2 grid points in a row and f, f,, f,, are the data elements at each grid point
for a ¢202 MESA scheme that contain no y or zderivatives. The two and three dimensional
problems reduce to the same simple set of equations in one-dimension and it is because of this
that the Tensor Form method is so successful in 3D (ie. The equation complexity does not
change. only the number of loops).

For the c2ol third order MESA scheme in three-dimensions, the spatial coefficients are solved

using Groebner bhasis” and Buchberger's algorithm in Mathematica. ‘They are found to he:

(0.dy.dz) 0.7k (0, dy.d:) 1k } (1.dy.d:) 0. & ] (1.dy.d:) 1.7k
@(0.0.0) f (0. )+f (1.y )+zf (0.j k) hf (1.j.&)

2 2 8 b
( Lo U] —3 f(“'dy‘d:’(U.j. l\) 3 ft(),dy.d: )(1_) I\] f( 1.dy.d= ](U.j. L) f(ldyd: l( IJ ]\)
a(l. 0, = - -
2h 2 h 4 4
_optldy dz) 0.5 k r(1ody,dz ) 1.7 b
a(2,.0.0) = / Zh( JLUE 2}1( = (3.33)
) 2f(il,dy,d:i(0.j~ /.') 2}'1“4111.(1'!(1‘./" /r) j'[l‘d"‘d“’(U._}'. /.') fll.dyd:p“'j./\,)
al3.0.0) = h B I + - + h*
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This is essentially the same form as in the two-dimensional case previously shown.

The local right-handed (i.j.k) coordinate system used is analogous to the (i,j) coordinate
system used in 2D in figure 3.9 and represents grid point locations. Odd stencils have their
(ij.k) origin at the center of the stencil and even stencils have an (i.j.k) origin at the closest
grid point to the center of the stencil in the direction of descending 1, and k coordinates. The
spatial interpolants origin is however, always at the center of the stencil whether it has an odd
or even dimension.

The variables dy.dzj.and k are undefined in equation 3.33. Assigning values to these is equiv-
alent to creating an interpolation function in the x-direction across the stencil for mterpolating
the function j’l—d:g——,{— along the line intersected by the j and k planes.

In a step analogous to the Tensor Form method in 2D, let s(itndex,dy.dz,j.k) denote the spatial

coefficient a(iindex.0,0) in equation 3.32 at the center of the row formed from the intersection

pay+is g

of plane j and plane k when the function being interpolated is FTEITECER

Perform the following set of loops to assign all the s variables for an even dimensioned stencil:

Do[Do[ Do[ Do[ Do
s(iindex.dy.dz,).k)=a(iindex.0.0)
dindex,0.0]

dy,0.D]

dz.0.D]

J -(N/2).N /2]

K. 1-(N/2)N/2]:

Figure 3.15: Loop to compute the S terms in 3D with even dimensioned stencils

And for an odd dimensioned stencil use:

Do[ Do[ Do[ Do[ Do[

sfiindex.dy.dz j.k]=a(iindex.0,0)
dindex,0.0]

dy,0.D]

dz,0.D]
J-IntegerPart[N /2] IntegerPart[N/2]}:
k. -IntegerPart[N /2] IntegerPart[N /2]};

Figure 3.16: Loop to compute the S terms in 3D with odd dimensioned stencils
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After that first set of loops, all the interpolations in the x-direction are completed. Now.
using that information (location S in figure 3.20). we will interpolate the data at S in the j-
direction shown in the figure. Again, define a one-dimensional interpolating function of order O

in the v direction as:

fw) =" a(0.5.0) (3.34)

“
|

This system can be solved using Groebner basis again or since it will have the sanmie form as
the x-direction interpolator, it is possible to symbolically replace the x-direction terms into y-
direction terms using a simple shift of indices. This symbolic replacement can be easily performed
in Mathematica. Again. the equations are kept simple since they are one-dimensional; This
advantage is significant in 3D since it permits fast creation and compilation of the FORTRAN
code.

For the ¢2ol third order MESA scheme in 3D, the spatial coefficients for the y-direction

interpolant are:

f(dl"“'d:'(i.().k) f{d"r'“'d:)(ﬂ l/-) h f(d""l‘d:)(l‘.().") h f(d‘r'l‘d:)(ll, 1/\)

0,0.0) =
alv.0.0) 2 + 2 + 5 8
-3 f[d.r,(J,d: )(10 A) 3 f(er 1).(17)(1'. 1 ]\) f‘d"r‘l'd:'[l'. 0. L) j‘(dj‘.lAd?](,‘Q 1. A)
a(0.1.0) = , _ _
2h 2h 4 4
. : —f'd'"']‘d”(i,u.l\’) f(df,l,dr)(l'.l.k) .
a{0.2,0) = 7 + 5T (3.35)
) tdr 0.d:) ;). I ) (da 0,d2) -‘ 1, I3 (dr 1,d:) '~ U, k (dr.1.d:) ;. 1‘ 8
dosy = HUUTG0E) 2 k) G0k Sk
h3 h3 h? h?

Since these correspond to a one-dimensional interpolant, they are again essentially the same
form as the first set of spatial coefficients used in the i-direction of figure 3.20.

Notice that the variables dx.dz.i. and k are undefined in equation 3.35. Assigning values to
these Is equivalent to creating an interpolation function in the y-direction across the stencil for

Ud.r+d:

along the line formed by the intersection of the i-plane and

. . . ) L e f
mterpolating the function s

k-plane. However, the functions, fl4@-43(; j Ly on the right-hand side of these equations are
already determined from the first loop and stored at the S locations of figure 3.20 .

They are defined by:

frtrdn GGy = s(de dy. d= k) (de)(dy!) (3.36)
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Substituting s(dx,dy.dz.j.k) for fAdy.ds (5 k) has the effect of dividing these equations by
(dxe"){(dy!).

Let s2(iindex.jindex.dz k) denote the spatial coefficient a(iindex jindex.0) at the center of
plane k when the function being interpolated is Fd%d—,;f— along the line in the j-direction of
figure 3.20. Perform the following loops to compute the spatial coefficients at location 52 on
each k plane for an even dimensioned stencil:

Do[ Do[ Do[ Do|

s2(iindex jindex,dz.k)=a(0 jindex.0) with flderooderydersiiy k) substituted by
s(derx.dery.derz.j k)

Jindex,0.0]

Jindex,0,0]

,dz.0,degree]
K-(N/2).N/2):

Figure 3.17: Loop to compute S2 terms in 3D for an even dimensioned stencil
Or perform this set of loops for an odd dimensioned stencil:

Do[ Do[ Do[ Do[

s2(iindex jindex.dz.k)=a(0 jindex.0) with f! derr dery.dersyig ioky substituted by
s(derx,dery.derz j k)

Jindex,0,0]

Jindex 0,0]

.dz.0.degree]

k.-IntegerPart[N /2] Integer Part[N/2]]:

Figure 3.18: Loop to compute S2 terms in 3D for an odd dimensioned stencil

At this point. the spatial coefficients a(i,j.0) for the full 3D spatial interpolant 3.31 are
known at the center of each plane k (indicated by S2 in figure 3.20) and will be used i one
final set of loops to find all a(i.j.k) at the center of the stencil. This is accomplished by using a

one-dimensional interpolant of order O in the z-direction.

(@}
f(z) = Z({(0.0‘/\'):k (3.37)

k=0
This can be solved using Groebner basis or symbolic modification of the coefficients from
the x-direction interpolant’s coefficients using Mathematica. For the ¢2ol third order MESA

schieme in 3D, the spatial coefficients are:
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f(d‘r'dy'(”(ll,j,o) f(df‘dy'('”(i‘j, 1) N h f‘df'dy'”(i.j,(]) h f‘dr‘dy‘“(l'.j, 1)

a(0,0.0) = 5 5 3 5
0(0 0 1) _ -3 f‘d“d%“’(i,j‘o) 3f(d‘r'dy'0’(i.j, 1) B f(dr dy.1) (1 j 0) B f(dr‘dyxl)(,"j‘ 1)
Y - 2h 2h 4 4
oy =fEEEDG 0y o ptndn G i) 0
a(0,0,2) = 2h + oh (3.38)
{dr.dy.0) 0 ) (dr.dy.0) 1 (dr.dy.1) 0 (dr. dy, 1) il
a(0.0.3) = 2f s (i.j.0) 2f o (3.4 )+ f h‘-‘(l FRY) n f h?(’ J. 1)

The variables dx.dy.i, and j are undefined. Assigning values to these is equivalent to creating
an interpolation function in the z-direction across the stencil for interpolating the function
0T L However, the f (¢rdy-d1(; j k) on the right-hand side of t] ‘
W— lowever, the functions, f (¢,j. k) on the right-hand side of these equations ar«

already determined in the previous loop and stored at the S2 locations of figure 3.20.

They are defined to he:
S dn g gk = s2(de ., dy. dz k) (deldyld:!) (3.39)

Substituting s2(de. dy. d=. k) for f14-@400 j kY in equations 3.38 has the effect of dividing
them by (daldyldz1). which is the required form for the spatial coefficients in equation 3.31.

Let s3(iindex jindex kindex) denote the spatial coefficient a(iindex jindex kindex) at the cen-
d.r+dyf

ter of the stencil when the function being interpolated in the k-direction is oriToy v

Perform the following loops to compute all the three-dimensional spatial coeflicients at loca-

tion S3. the center of the stencil,

Do[ Do[ Do

s3fiindex jindex kindex]=a(0,0,kindex) with fltdrrderydersi 5o ky substituted by
s2(derx.dery.derz k)

kindex,0,0]

Jindex.0.0)]

Jindex,0.0]:

Figure 3.19: Loop to compute S3 terms in 3D

Simply substitute s3(i. j. k) for a(i, j. k) in equation 3.31 and the 3D interpolation problem

s comipleted.
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Figure 3.20: S.S2, and S3 Storage Locations For 3D 2 x 2 x 2 stencil
3.2 Temporal Evolution

With the spatial coefficients from equations 3.9 and 3.31 known. the second step of the MESA
schemes is the development of a local propagator that evolves the solution to the next time step.
For the constant coefficient case of the linearized Euler equations, it is possible to develop a
propagator that propagates the waves exactly along the characteristic surfaces originating from
the stencil. Three equivalent procedures for implementing this locally defined exact propagator
are discussed. The Finite Difference Form is the the most expensive to create and compile but
is most efficient to execute in some cases. The Spatial Coefficient Form is easier to create and
compile but is the least efficient to execute. The Recursive Tensor Form is the simplest to create.
compile and the most efficient to execute on small high resolution stencils in 2D and most cases

in 3D. A cost comparison of the methods is made later and shown in tables 3.1 and 3.2.

3.2.1 Finite Difference Form Method in 2D

The Finite Difference form expresses cach evolution variable as a linear combination of all
the data on the stencil from a previous time step. It results in a simple single-step explicit
finite difference scheme. Each data element on the stencil has an associated coeflicient for each
variable that s evolved. This is achieved by using Mathematica to symbolically simplify the exact
propagator form from a linear combination of the spatial coefficients to a linear combination

of the stencil data. For example, in equation 2.25 the exact propagator form for the MESA
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c300 2D case i1s shown as a linear combination of the spatial coefficients. The spatial coefficient

indicated by t4s at the end of the first equation 2.25 for p}'jl 1s defined in terms of data elements
on the stencil using the techniques of section 3.1 as:
s _ n g0 , _
van = T N
20 g Ao 0 — 20 g 4 T (3.40)

. 9 , 4
lzn-f-l.j—l - 2’:',+1.j+0+ ’17'1+|‘j+1)/(4h )

Each of the spatial coefficients is expanded similarly resulting in a very large evolution equation
m terms of stencil data elements. This process i1s too expensive in 31, While it is possible to use
this process to create 2D codes, the large set of equations (one at each data element in the stencil
times the number of data elements at a grid point) are difficult to create and compile. If the
convection field is constant, then the set of equations reduce to a set of constants which can be
compiled quickly. but this still puts an enormous strain on Mathematica and may take weeks to
solve low order 3D problems. A cost analysis (see table 3.1) shows the explicit Finite-Difference

Form is not the most efficient to execute in the cases of interest anyway.

3.2.2 Spatial-Temporal Coefficient Form Method in 2D

The Spatial-Temporal Coeflicient Form uses the exact propagator as a linear combination of the
spatial coeflicients. The General Form of the exact local propagator for the primitive variables
will be:

20) 0 min(0,2(0)—j—k)
plecy ) = Z Z Z epli gkt 1k
k J i

2000 O min(O.200)—j—k)

u(r. y. t) = Z Z Z culi, jokyelytr (3.41)
koo

i
200) O min(O.2(0)=j—k)

Z Z Z ce(i, j kel t*
koo i

vlr, y. )
where ep(i, j k). cu(i, j k), ev(i. j. k) are arrays of spatial-temporal coefficients. The coeffi-

cients with k=0, (ep(i, j,0). culi, j,0). cr(i, j.0)) are defined using the techniques of section 3.1

and represent the spatial coeflicients of each primitive variable.
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The conditions for an exact propagator on these equations is:

PNy 1)+ my p OO ey ) + e OOy ) e p O (g ) a0y ) =0
W00 ey )+ my ! OO e g ) + PO g )+ ma a0 ey t) = 0
00D (g y ) + plO L0y ) + my v Oy ) + ma o 00y 1) = 0

(3.42)

where mr and my is the convection velocity in the x and y directions respectively.

Solving these equations for all values of x, y, and t results in expressing the spatial-temporal
coefficients as a linear combination of the purely spatial coefficients. For example, the c2ol
MESA scheme in 2D with an exact local propagator requires the following relationship between

the spatial-temporal coefficient and the purely spatial coefficients:

ep(1.0.5) = (=3my—9memy—3my’ —3 medmy?) ep(3.3.0) +
(=6marmy —Gmr my®) cu(3,3.0)+ (3.43)

3 9 ”? 9 2
(—: —3me — 3y —Vmar- my') cv(3.3.0)
b

Letting (h = ér = &y) be the grid spacing and (lam = %:7) be the ('FL time-step fraction,

and using the relationship in equation 3.43, and expressing the other spatial-temporal coefficients

as a linear combination of the purely spatial coetficients. produces the following MESA algorithm

n41l _ .,

for the pressure variable p; 7" =

cp(0,0.0) =

hlammycep(0.1,0) +

(h* lam?® + h¥ lam® my*) ep(0.2.0) +

(=3h° fam® my — B> lam® my?) ep(0.3.0) —
hilamma ep(1,0,0) 4+

W lam™ mre myep(1.1.0)+

(— (B lam® ma) = W3 am® mamy®) ep(1.2.0) +
(3 R am* me my + DHam™ me my3) ep(1.3.0) +

(h*lam™ + h* lam® ma?) ep(2.0.0) +
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(~ (h* lam® my) — b® lam® ma® my) ep(2.1.0) +
h* lam® 4 4 a4 4 a9 4 4.0 . ;
— + h% lam™ ma + W lam™ my” + B lam™ ma” my= ) ep(2,2.0) +
(= (h° lam® my) — 3 h° fam® ma® my — h° lam® my® — ¥ lam® ma® my3) ep(2,3.0) 4+
(=3 03 lam® me = 13 lam?® ma?) ep(3,0,0) +
(3 h*lam®* me my + k' lam® ma2® my) ep(3,1,0) +
(= (h° lam® mr) — h® lam® mr® = 30° lam® my” — h® lam® ma? myg) ep(3.2,0) +
(30" lam® ma my + 30" lam® ma® my + 30 lam® me my® + A lam® ma™ my?) ep(3,3.0) —
hlam cu{1.0,0) +

R lam* my cu(1,1.0) +

— (W3 lam® ‘ Y
(——w -3 lam® my‘) cu(1,2.0)+

(Wt tam™ my + b lam™ my®) cu(1,3.0) +
2h? lam® ma cu(2.0,0) -
203 lam® me my cu(2.1.0) +

3
(=20 lam® e my — 20° law” mr my?) cu(2,3.0) +

2 bt lam™ ma v )
(wi + 20 lam® me my') cu(2.2,0) 4+

(= (h* [(1;7)3) — 3R lam® mae?) cu(3.0,0) +

(h? lam® my + 3 b lam® ma? my) cu(3.1.0)+

-

— (h® lan®) - s - 5 . . e .
—————= = Mlam” me = D lan® my” =30 lam” me” my” | cu(3,2,0) +
)

3h%lam®m 5 . : s , L
(_l/ + 3% lam ey + B lam® my® + 30 lam” mae® my® ) cu(3. 3. 0)—

hlam ce(0,1,0) +

2h* lam™ my ee(0.2.0) +

(= (PP Ham®) = 303 lam® my®) ce(0.3.0) +
W lam® mr ee(1.1.0) =

203 am® mr my er(1,2.0) +

(W dam®* mae + 303 lam™ ma my”) ee(1,3.0) +

— (13 _ ' .
(# — W lam? m.z") cr(2.1, 0+
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v(2,2,0)+

+2h  lamt ma® my

(2 Rt lam™ my
3

=

— (h® lam®) 5 5
A T L RS lam® ma? — B® lam® my? = 3R° lam® ma* my* (2,3.0)+
5

(h? lam®* ma + h lam* ma®) co(3.1,0) +

(— 2% lam”® mzmu—Zh lam® mr’ mu) v(3,2.0) +

(3 RS lam® ma

- + W% lam® ma® + 3 4° lam” me my” + 3h° lam® ma® my® ) cr(3,3,0)
5

(3.44)

Notice that the number of spatial coefficients used in this linear combination is equal to
the number of data elements in the stencil. Each spatial coefficient has an associated equation
on its left hand side just as occurs in the finite difference form, except only one coefficient
is assigned here regardless of the number of evolving variables. Let ppkp(ij).ppku(i,j). and
ppkv(ij) respectively represent the left hand side equation of the terms involving cp(i. j. 0).
culi, 7,0), and cr(i, j,0) in equation 3.44.

It is possible to then express the pressure variable’s MESA scheme as:

o o

"‘H ZZ (prkp(i. Jyepli, j.0) + ppku(i, jeu(i, j.0) 4+ ppke(i, jlee(d, j.0)) (3.45)

=0 j=0
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[9.4]

A helpful mneumonic is the following matrix form:

ppkp(0,0) % cp(0.0.0)  ppkp(0. 1)+ ep(0,1.0)  pphkp(0.2) * cp(0,2,0)  ppkp(0,3) * ep(0.3.0)
ppEp{10)* ep(1,0.0)  pphp(1.1) % ep(1,1.0)  pphkp(1,2) % cp(1,2,0)  ppkp(1.3) * ep(1,3.0)
prkp(2.0) % ep(2,0.0)  ppkp(2.1) % ep(2,1.0)  ppkp(2.2) % cp(2,2.0)  ppkp(2.3) * ep(2.3.0)
ppkp(3.0) * ep(3.0.0)  ppkp(3.1)x ep(3.1,0)  ppkp(3.2) * cp(3,2.0)  ppkp(3.3) * p(3.3.0)
pphu(0.0) % cu(0.0,0)  ppku(0, 1) * cu(0.1.0)  ppku(0.2) * cu(0,2,0)  ppku(0.3) % cu(0, 3, 0)
ppku(l0) + cu(1.0.0)  pphu(l, 1) % cu(1,1,0) pphu(l.2)*cu(1.2.0) ppku(1,3)* cu(l1.3.0)
prku(2.0) % cr(2.0.0) ppha(2, 1) cu(2.1,0)  pphu(2.2) % cu(2.2,0)  ppku(2.3) % cu(2.3.0)
préa(3.0) * cu(3.0.0)  pphu(3. 1) * cu(3,1.0) pphu(3,2)* cu(3.2,0) pphu(3.3) % cu(3.3.0)
prke(0.0) x cv(0.0,0)  pphke(0. 1)+ cv{0,1.0)  pphv(0.2) x c0(0.2.0)  ppkr(0.3) % cv(0.3.0)
pphe(L0) x cv(1.0.0)  pphkoe(l 1) *ce(1. 1O} ppho(1.2) x co(1.2.0)  ppke(1.3) % cv(1.3.0)
ppRv(2.0) * cv(2.0,0)  pphe(2 1)« en(2.1.0)  pphv(2.2) * cv(2,2.0)  pphke(2.3) x cv(2.3.0)
prke(3.0) % cv(3,0.0)  pphe(3. 1) % er(3.1.0)  ppke(3.2) * cv(3.2.0)  pphv(3.3) % cr(3.3.0)

(3.46)

in which to produce the pressure at the next time step, each of these elements in the matrix

form must be evaluated. A similar matrix mneumonic is formed for the u and v velocity variables.

Unlike the explicit finite-difference form of these equations. evolving the derivative of the

pressure pr. will actually require fewer of these matrix elements. The pphp(i.j). pphu(i.]j).

ppke(i,j) coefficients do not depend upon the dimension variables « or y and do not change

therefore when the derivative of equation 3.45 with respect to x or yis taken. And. the ep(i. j.0).

cu(i, J.0). cv(i. j.0) can simply be shifted in the matrix because of relation 2.2. This is seen by

taking the x-derivative of p:

(-)I)VH—I O O
dr o el
=0 y=0
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The new mneumonic matrix for p, becomes:

ppkp(0,0) * cp(1,0,0)  ppkp(0,1) * cp(1.1,0) ppkp(0,2) % ep(1,2.0)  ppkp(0.3) x cp(1,3,0)
prkp(1.0) x ep(2,0,0)  ppkp(1, 1) * cp(2,1.0)  ppkp(l.2) % ep(2.2.0)  ppkp(1.3) * cp(2,3,0)
pphp(2,0) % ep(3,0.0)  ppkp(2, 1) *ep(3,1.0) pphp(2,2) % ep(3.2,0)  ppkp(2.3) * cp(3.3.0)
ppkp(3,0) %0 ppkp(3.1) %0 ppkp(3,2) 0 ppkp(3.3) 0

ppku(0,0)* cu(1.0,0)  pphku(0,1)* cu(1,1,0) pphu(0,2) * cu(1.2,0)  ppku(0,3) * cu(1.3.0)
ppku(1,0)* cu(2.0,0)  ppku(l. 1) * cu(2.1.0) ppku(1,2) % cu(2,2.0)  pphu(l.3)* cu(2.3.0)
pphu(2.0) * cu(3,0,0) ppku(2,1)*cu(3.1,0) ppku(2,2) % cu(3.2.0)  pphu(2.3)* cu(3.3.0)
ppku(3.0) % 0 ppku(3.1) %0 ppku(3.2) % 0 ppku(3.3) %0

ppkr(0,0) % cv(1.0.0)  ppke(0. 1)+ ce(1,1.0) ppkv(0,2) * cv(1.2,0)  ppkr(0.3) *cr(1.3.0)
ppke(1.0) x cv(2,0,0)  ppke(l 1) * ce(2.1,0) ppke(1.2) x cv(2.2.0)  ppko(1.3) x cv(2,3,0)
PPk E(2.0) % cr(3.0.0)  ppkr(2. 1) s ev(3,1.0)  ppke(2.2) % cr(3.2,0)  ppkv(2.3) ¥ cv(3.3.0)
prke(3.0) %0 pphe(3.1) 0 pphv(3,2) %0 ppkr(3.3) %0

(3.48)
The zero terms occur since for the ¢20l MESA scheme the higher order derivatives are zero

again using the relation 2.2,

ep(i >3,)>3.0)=0

cu(i >3.5>3.0)=0 (3.49)

ce(i >3.5>3.0)=0

In general, the higher order derivative evolution variables require less work.
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The shifting process is efficiently implemented in the loop shown in figure 3.21 that evolves

all the variables:

Do[Do|

psum=_0;

usum=0;

vsum=0;

Dol

Dol

mfac=((1index+dx)™*(jindex+dy)!)/((iindex!)*(jindex")):

psum = psuin+(mfac*ppkp(iindex jindex) * cp(iindex+dx.jindex+dy.0)) :
psuni = psum+(mfac*ppku(iindex jindex) * cu(iindex+dx jindex+dy.0)) :
psum = psum-+{mfac*ppkv(iindex jindex) * cv(iindex+dx jindex+dy.0)) :
usuin = usum-+{mfac*uukp(iindex jindex) * cp(iindex+dx,jindex+dy.0)) :
usum = usum+(mfac*uuku(iindex jindex) * cu(iindex+dx jindex+dy.,0)) ;
usum = usum+(mfac*uukv(iindex jindex) * cv(iindex+dx jindex+dy.0))
vsum = vsumn+(mfac*vvkp(iindex jindex) * cp(iindex+dx jindex+dy,0)) :
vsum = vsum+(mfac*vvku(iindex jindex) * cu(iindex+dx,jindex+dy.0)) :
vsum = vsum+(mfac*vvkv(iindex jindex) * cv(iindex+dx jindex+dy.0)) :
dindex.0,0-dx]

Jindex 0.0-dy]:;
n+1

Par dy:[):\‘llllll
n+l __ .
“t{.l‘.rt’y_llbunl'
n+1

Cia gy = Vsun:
(dx.0.D):
dy.0.D]:

Figure 3.21: Evolving all variables using the shifted data. 2D case

The factorial is introduced for higher order derivatives and simply multiplies each element
of the mneumonic matrix and is a consequence of equation 2.2. Also, notice that the inner loop
size decreases as dx and dy are increased. This corresponds to removing a column or multiple
rows from matrix 3.46 for each derivative of p. Compare this to the Finite Difference method in
whicht the number of elements in the matrix remains the same for successive derivatives. Also,
the pphp(i, ). ppku(i. j). ppke(i. j) left hand side equations only need to be computed for the
primitive variables and are reused for subsequent derivatives of the primitive variables; While
this significantly reduces the nwiber of equations required to be compiled by a factor of 3( D+ 1)
compared to the Finite Difference method. This is still too many equations and takes too long to
create and compile the FORTRAN code for high accuracy 2D and all 3D schemes. Despite the
fewer sets of equations, the Spatial-Temporal Forni is less eflicient because it needs to recompute

the spatial coefficients at every stencil.
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3.2.3 Recursive Tensor Form Method in 2D

The Recursive Tensor form method eliminates most of the complexity of creating and compiling
the FORTRAN code since only the one-dimensional equations created in the 2D or 3D spatial
interpolation Tensor Form method are used. This is accomplished by developing a recursive
form of the time advance that can be expressed in a simple loop.

The General Form of the exact local propagator in equation 3.41 has coefficients defined

similarly to the spatial coefficients of equation 2.2, except the time dimension is added:

1 (')i+j+k1,
i Gai oyl OtF

1 Jrithy
W At Oy Otk

1 otk

kY Gt Dyl ot

epli g k)

culi, j. k) (3.50)

(’l'(l‘]l.) =

Now substitute i+a,j+b.and k+c for i,j. and k. respectively, into these equations 3.50. Smce
pa. and v are analytic functions the mixed derivatives may be permuted and therefore. these

equations after the substitution may be written as:

gatbte oty
artoyrdtk

L
] JAbk+e) = ——

eplitajtbksc) ((i+a)!(j+b)!(1c+(-)!> dr iyt e
Dat b4 i'+7+k

1 gertt (E).:"i)yli';:")
- - — (3.51)

(i + a)j+ )k + ) dradyt e
gadb4r grtithy
| ) gati+ (———i,‘,’,.i,y,(-,,k>

G+ D)I(A + o) dwedytot”

cu(i+a,j+bk+c) =

celitaj+bb+e) = <(i+a)

And then use the basic definition 3.50 to replace the primitive variable derivative terms in
equation 3.51 with the spatial-temporal coefficients (ep(ijX)cu(igk).ev(igk)).
With these procedures, an expression for the derivatives of the spatial-temporal coeflicients

ol equation 3.41 is found in terms of lower order spatial coefficients. The basic recursive relation
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O epli g k) (i + a)(j + b)!(k + o)
= ] ] '.' *
PR EHY plita.j+bdto)
O (i, k) (i + a)l(j + b)(k + ¢)!
3 = +a,j+bk+c 3.5
i?r“(?y”t)# I'_],/x‘ cu(i+a,j+ ,ﬁ+() (3.02)
G+ eu(i j k) (i + a)l(j + b)1(k + !

TR = — cv(i+a, j+bhk+c
dradyb die ayth! ( J )

All recurrence relations need a starting condition and this is found from the developnient
of an exact propagator for the linear Euler equations in equation 3.42. Notice that the basic
condition equations 3.42 contain ounly first order derivatives. Therefore the factorial terms in
equations 3.50 become unity. The basic condition equations 3.42 can now be rewritten in terms

of the spatial-temporal coefficients by simple substitution:

ep(G.0. 1)+ myep(0,1.0)+ cv(0, L.0) + meep(1,0,0) + cu(1,0.0) = 0
cu(0.0. 1)+ mycu(0.1,0) + ep(1.0,0) + mr cu(1,.0,0) = ¢ (3.53)
(0.0, 1)+ ep(0.1,0)+ myce(0, 1,0) —me ee(1.0.0) = 0

In addition, the derivatives of these equations are also zero.

gtbtr
(id—dub—_— (epO. 0Dy +myep(0.1.0) + (0. 1.0)+ma ep(1,0.0) 4+ cu(1.0,0)) = 0
) (')('l+(r+r'
FII (cu(0.0. 1)+ mycu(0.1,0) 4 ep(1,0.0) + marcu(l,0,0)) = 03.54)
Aty =r
(")a+b+r

—
<

{cr(0, U: D)+ ep(0,1.0) + my er(0.1,0) —ma ee(1,0,0))

U.I'“y":"

It is now possible to construct a recursive definition of the spatial-temporal coefficients that
generates all the required coefficients. The derivatives in equation 3.54 can now be replaced
with products of spatial-temporal coefficients and factorials using equation 3.52. After putting
the coefficient term with the highest t-derivative on the left side of the equations the following

recurrence relation is found:
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epla, b, ey =

—((14+a)imrepi 14+ab.—14r+ru(ldal,—t4e)))=(14b)(my 1‘[’(a,]+b‘—1+(‘)+f‘l‘(ﬂ,]+b,-—l+f‘))

-
cula, b, c) =
—{(1+b)ymy r,‘u(¢1,l+b,—l+ri)—(l+aHr‘]\(l+a‘h,—]+r")+mrPu(l+a,b,-—1+vi] (3 r)r))
- 3.8

cv(a,b.c)=

— (1) (eplal+b =14c)dmy cela l+b —14r)))=(lta}mr cv(t4a b —14r)

q

Since the left hand side is always a t-derivative of one higher order. it is possible to do the

following loop to compute all the spatial-temporal coefficient relationships:

Do[Do[Do[

eplig k)= (-((L + D*(x*ep(l +ij-1 + k) + cu(l + 1j-1+K))) -
(1 + PD*(my*ep(id + j-1 + k) 4+ ev(id 4+ j.-1 + k)))/k

cuij.k)= (-((1 + )y*my*cu(i,l +).-1 + k)) -

(4 D*ep(l + -1+ k) + mx*eu(l + ij.-1 + k)))/k

ev[igok]= ({1 4 )F(ep(il + -1+ )+ my*ev(id 4+ i1+ K))) -
(1 + i)y*mx*ev(l + i,j-1 + k))/k .

1.0.Min[O.2*0-k-j] ].

Jj.0.01].

K.1.2%0 J:

Figure 3.22: Loop to compute all spatial-temporal coefficients in 2D

This method does not produce any equations; therefore, the FORTRAN code is easy to
create and compile.

After executing that loop, all the spatial-temporal coefficients are known. The evolving
variables may be now be time advanced. According to the General Form of the exact local

propagator in equation 3.41. only p(0.0.4k) is needed since we are using centered difference
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schemes and the origin is at the center of the stencil. Therefore, equation 3.41 reduces to:

200)

Z epl(0, 0, k)t*
"

20)

Z cu(0.0. k)t* (3.56)
"

2(0)

Z ce(0, 0, k)t

k

p(0,0.1)

I

u(0,0,1t)

H

v(0,0. 1)

Derivatives of these primitive variables require higher-order spatial-temporal coefficients. For

example, p, 1s:
20)

pe(0.0.8) = Z ep(1.0, k)t (3.57)

T
Higher order derivatives introduce factorial terms and must be accounted for. For example,

the General Form for the primitive variable’s derivatives is:

200

P p(0.0. ¢ 1
00,0 Z —giela bkt (3.58)

(')J.ayb

This form may be more efficiently computed using the well-known Horner's method [15].

The loop in figure 3.23 efficiently advances all the variables on a stencil using Horner’s method:

DO[DO]
factterm=fac(dx)*fac(dy)
psum=0.0: usum=0.0; vsum=0.0
DOJ[
psum=physicaltstep*((factterm * cp(dx.dy kindex))+psum)
kindex 2*0.1.-1]
DOJ
usum=physicaltstep*((factterm * cu(dx.dy kindex))+usum)
kindex,2*0.1.-1]
DOJ
vsum=physicaltstep*((factterm * cv(dx.dy kindex))+vsum)
kindex.2*0.1.-1]
p:;f}iy([ J)=psum+(cp(dx.dy.0)*factterm)
(';,'*llly(t J)=usum~+(cu(dx.dy,0)*facttern)
tL’,"If}{”(z.j):vsum-}-(cv(dx.(ly.())*facttm‘m)

dx.0.D)]
dy.0,D]

Figure 3.23: Loop for advancing all variables with Horner's method in 2D
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Note that all the spatial-temporal coefficients (cp(i.j.k).cu(i,j.k).cv(i,j.k) are solved in the loop
in figure 3.22 first, and that they were computed in an efficient recursive manner by reusing the
data froni other lower order spatial-temporal coefficients. This efficient reuse of data increases
as the number of data elements on a grid point increases and the number of spatial dimensions

Hncreases.

3.2.4 Cost Comparison of Methods in 2D

The various approaches to implementing the MESA scheme will now be compared for efficiency.
Fortunately, the most efficient method for the applications of interest are also the easiest to
create and compile.

In 2D, there are 3(D + 1)* data elements per grid point where D is the maximum order
derivative terni. The number of evolution equations is also 3(D + 1)? since all data elements on
a grid point need to be propagated using the MESA scheme. A stencil will have (NN D+ 1)
data elements where N is the number of grid points in a row. Since each evolved data element
using the Finite Difference Form is a linear combination of all the data contained in the stencil,
the number of multiplies required per stencil to advance all the data at the center of the stencil
is:

9(1+ N2 (3.59)

For the constant coefficient linearized Fuler equations, the only additional cost is evaluating
the coefficients of the data elements once at the beginning, but this cost is quickly amortized
and therefore will be ignored here.

The Spatial-Temporal Form evolution method can use either the General Form or the Tensor
Form of the spatial interpolation. The Tensor Form and General Form are comparable m
efficiency when the General Form is solved in line-groups . but the General Form requires too
many equations and will not he considered further.

('alculating the cost is a simple matter of counting the number of multiplies performed after
all the spatial coefficients are determined. The Tensor Form of spatial interpolation has the

following cost to compute the interpolated data at location S in figure 3.12 is bounded by
N2 D O

~ Y Y Y O+1=(1+D)N(1+0) (3.60)
L—(N/

j= 2 dy =0 iindrr=0
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In addition, computing the y-interpolated data at location S2 in figure 3.12 is bounded by

the following cost:

(o] (@} ]
~ Y Y 0+1=(1+0) (3.61)

Hinder=0jinder=0

And the cost of evolving all the stencil data using the Spatial-Temporal Form is:

O-dy O—dr

D D ‘ 2 . 2
ZZ Z Z 21:21(1+D) (2_2(1+())) (3.62)

dy=0dr=0jinder=0iinder=0

. assuming the factorials are computed and stored once at the beginning.
If the Recursive Tensor form of the propagator is used, then in addition to the cost of
determining the spatial coeflicients, with costs 3.60 and 3.61, the cost for determining the spatial-

temporal coefficients is:
20 0

(@]
SN N =300 +0) (3.63)

k=1j=01i=0
and the cost for using those spatial-temporal coefficients to evolve all the data elements in

the center of the stencil is:

D D
DN 443010y =11+ DY (14 30) (3.64)
dy =0 dr=0

A cost comparison of these three approaches in two-dimensions is shown in table 3.1. The
first column represents the width of the stencil in grid points. The second column is the data
depth or equivalently the maximum order derivative in a given direction on a grid point of the
stencil.

The third colutnin displays the cost using the Finite Difference Form. In this form, it is
assumed that the convection velocity is constant so that a single constant multiplies each data
element of the stencil. Most of the computational work is done in Mathematica to reduce it to
this form. Time evolution is then accomplished with a simple linear combination of the stencil
data.

The fourth cohunn displays the cost of using the Spatial-Temporal Form. In this form it is
assunted that the spatial coefficients are found using the Tensor Product forn.

The fifth column displays the cost of using the Recursive-Temporal Form in which the spatial

coeflicients are found using the Tenusor Product Form and the time advance is accomplished with
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a recursive DO-Loop formulation.

The last column identifies which method s superior for the given MESA algorithim.

Notice n table 3.1 that the Finite Difference form is the best method in most cases, except
for the cases which are most useful for this dissertation. The small high-order stencils simplify
wall boundary solutions as will be discussed later.

Next, we will discuss the extension of these ideas into three spatial dimensions.

3.2.5 Finite Difference Form Method in 3D

The Finite Difference form expresses each evolution variable as a linear combination of all the
data on the stencil from a previous time step as discussed in section 3.2.1. It results 1n a
simple single-step explicit finite difference scheme. Each data element on the stencil has an
associated coeflicient for each variable that's evolved. This is achieved by using Mathematica
to symbolically simplify the exact propagator form from a linear combination of the spatial
coefficients to a linear combination of the stencil data. For example, the exact propagator form
for the MESA ¢300 3D case for p;’ji 1s a linear combination of 159 3D spatial coefficients,
1‘1+1

T are defined

(eplijohos), cu(i, jokos), cv(i, j ok, s), cw(i.j. k. 5)). The spatial coefficients for » ]

i terms of data elements on the stencil using the techniques of section 3.1. The o9y 18 defined

as:

cr(2.2.2)=

n S¥R n _gan
(i oo — 200 ko T U o — 20 ok T

4 .0 9y an n _yan
iy okt T 20 ot O -1 T 20 ko T
n _ 9 ,n A g 9
G etk — 20—tk F A0 Sk — 280 sk T

L s on e Yy W oer
4 Civuj+uk—1" 8 U0 j+0. k0 +1 Vb0 j+0 k41— 2 Vit j+1.4~1 + (3.G))

n oy ,n n ORI
A k0~ 200 e TR o ko T 20 sk T
2 T

n N N 9
Clhgotar — 20 okt T A oo T 20 ok T

Rl V) 1 KL AL
Pivlj+1.k-1 ‘3'f+x,j+1.k+u+“;+1J+1,A-+J)/3’/’

The other I8 spatial coefficients are expanded sinnlarly resulting in a very large evolution

equation in terts of stencil data elements. This process s too expensive for three-dimensional
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N | D | Finite Difference (FD) | Spatial-Temporal {(ST) | Recursive Tensor (RT) | BEST
200 1.5563 2. 2.18184 D
2|1 2.76042 3.06333 3.23754 FD
2| 2 3.46479 3.7124 3.80672 FD
203 3.96454 4.18241 4.20063 FD
2 4 4.35218 4.55145 4.50243 FD
215 4.66891 4.85543 4.74719 FD
206 4.93669 5.11393 4.95312 FD
2|7 5H.16866 5.33884 5.13087 RT
2| 8 5.37327 5.53789 528725 RT
209 5.5563 5.71644 5.42684 RT
2| 10 5.72187 5.8T832 5.5529 RT
2|11 5.87303 6.02637 5.667T83 RT
2|12 6.01208 6.16279 5.77344 RT
2013 6.14081 6.28926 B.ETLL2 RT
2 | 14 6.26067 6.40714 5.96199 RT
2015 6.37278 6.51752 6.04693 RT
310 1.90849 2.38561 2.79379 FD
4 0 2.15836 2.66652 3.20629 FD
41 3.3624% 3.75959 4.17073 FD
12 4.06685 1.42037 4.71767 FD
413 4.5666 4.39672 5.10153 FD
41 4 4.95424 2.26975 5.39759 D
115 5.27097 5.57647 5.63866 FD
116 5.53875 5.83698 5.84199 FD
4|7 577072 6.06341 6.01783 FD
1R 5.97533 6.26367 6.17274 FD
419 6.15836 G.44319 6.31116 FD
4 110 6.32393 (G.GOH8T 6.430628 FD
4 11 6.47509 6.7546 6.5H043 FD
112 6.61414 6.89159 6.65537 FD
4] 13 6.74287 7.01855 6.75249 FD
1] 14 6.86273 7.13686 6.84287 RT
1115 6.97484 7.24763 6.92739 RT
510 2.3521% 28803 351878 FbD
6| 0 2.51055 3.07482 3.77056 FD
6 1 3.71466 4.16331 471198 FD
6| 2 4.41903 4.82142 5.25231 FD
6 3 191878 5.29611 5.63303 FD
6 1 5.30643 5.66801 5.92727 FD
615 5.62315 5.97393 6.16713 FD
6 6 5.89094 6.23383 6.36962 FD
6 T 6.1229 6.45979 6.54483 FD
6 8 6.32752 (G.6H967 6.69925 I"D
619 6.51055 (. RINER 6.83729 I'D
6] 10 6.67612 7.0013 65.96209 FD

Table 3.1: Cost comparison (log,, multiplies per grid point) of 21 miethods
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applications. The large set of equations (one at each data element in the stencil times the
number of data elements at a grid point) are difficult to create and compile. A cost analysis
(see table 3.2 shows the explicit Finite-Difference Form is not the most efficient. to execute in

the cases of interest.

3.2.6 Spatial-Temporal Coefficient Form Method in 3D

The Spatial-Temporal Coefficient Form uses the exact propagator as a linear combination of the
spatial coefficients. The General Form of the exact local propagator for the primitive variables
will be:

3(0) 0 0 minfO3(0)-i—j=Fk)

plr,y, = 1) = ZZZ Z (‘]';(i.j.l«,.s"),z"'y":klf‘q (3.66)
& k i i

30 0 0 min(O30)—i—j=k)

ey sty = DY 3 culi, jok syl F e (3.67)
s koo [
30y 0 0 mnO3(0)-i—j—k)
v(r.oy. 2. ) = ZZZ Z cv(i, joh.s)aiy e (3.68)
s k J !
3(0) 0 O min(0.3(0)—i-j—k)

wleoyosd) = 3 Y 3 cwli, k. syl y 2K (3.69)
PR i

where ep(i, j k.s). culi, j h.s) eeli jokos) and cw(i, J k. s) are arrays of spatial-temporal
coefficients. The coefficients with s=0. (ep(i.j. k. 0). ca(i, j. k. 0), ce(i, j. k. 0), cw(i.j. k. 0)) are
defined using the the techniques of section 3.1 and represent the spatial interpolation coefficients
of each primitive variable.

The conditions for an exact propagator to the linearized Euler equations using the General
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Form equations 3.66 1s:

PO Gy s ) e pHO O ey s
VT ey s ) g OO0 ey s 1)
PO L0 Gy s 4 e p DDy s )+

w1000 ey 2 t) =0

W OO D ey s ) om0y 4

iy d L0 sy p 00 ey

IR AR Yy, = 1) = 0 (3.70)
plOOOD Gy s ) oz oLy s

1,{(?,1,“,”)(‘1,' .U‘ :‘{) _+_ ]”'U l,(”.l,n‘())(d,' y‘ z, i)+

ma ot Oy s ) = 0
@O0y gy 0O ey s )

mz !N e gy s )+ my w0 ey s O+

ma wt POy st = 0

where e,y and mz is the convection velocity in the x,y, and z directions respectively.
Solving these equations for all values of dimension variables x.y.z and t results in expressing
the spatial-temporal coefficients as a linear combination of the purely spatial coefficients. For

example, the cZol MESA scheme in 3D with an exact local propagator requires the following
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relationship between the spatial-temporal coefficient and the purely spatial coefficients:

ep(1.0,0,2) = (1 4+ mz7) ep(1,0,2.0) +
mymzcp(l,1,1,0)+
(14 my?) ep(1,2,0.0)+
2mrmzep(2,0,1,0)+
2mrmyep(2.1,0,0) +
(34 3me?) ep(3,0.0.0) +
2mzceu(2.0,1,0)+
2mycu(2.1.0,0)+ (3.71)
Ginacu(3,0.0.0)+
mzev(l, 1, 1,0)+
2mycr(1.2,.0,0)+
2mrer(2,1,0.0)4+
2mzew(1,0,2,0)+
mycw(l. 1.1,0)+

2mrcw(2.0.1,0)

Using that relationship and expressing the other spatial-temporal coefficients as a linear
combination of the purely spatial coefficients, produces the MESA algorithm for the pressure
variable p;’j}_ as a linear combination of the spatial interpolation coefficients similar to equa-
tion 3.44, but much larger in 3D. The number of spatial coefficients used in this linear combi-
nation is equal to the number of data elements in the 31 stencil. Each spatial coefficient has
an associated equation on its left hand side just as occurs in the finite difference form. except
only one coefficient is assigned per data element regardless of the number of evolving variables.
Let ppkp(ij.k).ppku(i,j.k). ppkv(ij.k). and ppkw(ij.k) respectively represent the left hand side
equation of the terms involving cp(i.j.k.0).cu(ij.k.0). ev(i,j.k.0) and ew(ij.k,0) analogous to the

2D case.
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It is possible to then express the pressure variable’s MESA scheme as:

O
vt = ZZZ (ppkp(i.j. k)ep(i j.k.0) +

i=0 j=0 k=0
pphu(i, j, k)eu(i, j. k,0)+ (3.72)
prke(i j k)ev(i, j k. 0) +

pphw(i, j k)ew(d. j k,0)

‘The matrix mneumonic 3.46 used in two-dimensions becomes a tensor or cuhe-shape in three-
dimensions. To evolve the pressure to the next time step, each of the elements in the muneumonic
formi must be evaluated. A similar mneumonic is fornied for the u.r and w velocity variables.

Unlike the explicit finite-difference form of these equations, evolving the derivative of the pres-
sure pp. will actually require fewer of these mneumonic elements. The ppkp(i, j. &), pphu(i. j k).
ppke(i, g k). and pphkw(i. j k) coefficients do not depend upon the dimension variables » .y or =
and do not change therefore when the derivative of equation 3.72 with respect to r.y, or = is
taken. And. the ep(i, j. &, 0), cu(i. j. k., 0). co(d, j. k. 0), and cw(i. j, k.0) can simply be shifted. as

was done in the two-dimensional case. in the tensor cube. This is seen by taking the x-derivative
of .
()pn-{-l QO
—.;—’,—i —ZZZ (pphp(i . k)ep(i+ 1.j k. 0) +
oa i=0 j=0k=0
pokuli, j k)eu(i+ 1,7, k.0) + {3.73)
ppkv(i, jok)ee(i+ 1,4k, 0) +

pphw(i. j k)ew(i+ 1. j. k. 0))

The new mmeumonic 3.48 for p, in 2D becomes a cube in 3D in which each zero represents
a whole role of zeros into the page.

The zero terms occur since the c20l MESA scheme’s higher order derivatives are zero and
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under the derivative interpretation, the spatial coefficients satisfy:

ep(i >3.)>3.k4>3,0)=0 (3.74)
cu(i >3,)>3. k>3.0)=0 (3.75)
cr(i>3,7>3.6>3.0)=0 (3.76)
cw(if >3,.j>3.k>3.0)=0 (3.77)

In general, the higher order derivatives of the evolution variables require considerably less
work in three-dimensions than the finite-difference method hecause many of the terms become

zero and therefore do not need to be multiplied.
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The shifting process is efficiently implemented in the loop shown in figure 3.24 that evolves

all the variables in the center of a stencil:

Do[Do[Do|

psum=0;

usum=0;

vsum=0;

wsum=»();

Do[

Do[

Dol

mfac=((iindex+dx)!*(jindex+dy)!*(kindex+dz)!)/((iindex!)*(jindex")*{kindex!))

psum=psum+(mfac*ppkp(iindex jindex kindex)*cp(iindex+dx jindex+dy kindex+dz.0))

psum=psum+(mfac*ppku(iindex jindex,kindex)*cu(iindex+dx jindex+dy kindex+dz,0))

psum=psum-+(mfac*ppkv(iindex jindex kindex)*cv(iindex+dx jindex+dy kindex+dz.0))

psum=psum+{mfac*ppkw(iindex jindex kindex)*cw(iindex+dx jindex+dy kindex+dz.0))

usum=unsum+(mfac*uukp(iindex,jindex.kindex)*cp(iindex+dx jindex+dy kindex+dz,0))

usum=usum+(mfac*uuku(iindex jindex kindex)*cu(iindex+dx jindex+dy.kindex+dz.0))

usum=usiim+{mfac*uukv(iindex jindex kindex)*cv(iindex4dx jindex+dy kindex+dz.0))

usum=usutn+(mfac*uukw(iindex jindex kindex)*cw(iindex4+dx jindex+dy kindex+dz.,0))
{ )

vsum=vsum+(mfac*vvku(iindex jindex kindex)*cu(iindex+dx jindex+dy kindex+dz.0))

vsum=vsum+(mfac*vvkv(iindex jindex kindex)*cv(iindex+dx,jindex+dy kindex-+dz,0))

vsum=vsum+(mfac*vvkw(iindex jindex kindex)*ew(iindex+dx jindex+dy kindex+dz,0))

wsum=wsum+(mfac*wwkp(iindex jindex kindex)*cp(iindex+dx jindex+dy kindex+dz.0)

wsum=wsuwn-+{mfac*wwku(iindex jindex kindex)*cu(iindex+dx jindex+dy kindex+dz.0)

wsum=wsuni+{mfac*wwkv(iindex jindex kindex)*cv(iindex+dx jindex+dy.kindex+dz.0)

wsum=wsum+{mfac*wwkw(iindex jindex kindex)*ew(iindex+dx jindex+dy kindex+dz.0

dindex.0,0-dx]

Jindex,0,0-dy]:

kindex,0,0-dz):

n+1 . ,
Por dy.d- —DSUNL

n+l
Uiy dy.d>

n4l
{dl dy.d- =VSUln,

0
vsum=vsum+(mfac*vvkp(iindex jindex kindex)*cp(iindex+dx jindex+dy kindex+dz,0)
)
)
)
)
)
)

=usuin;

4 — WU

Figure 3.24: Evolving all the variables by shifting the data. 3D case

The factorial is introduced for higher order derivatives and simply multiplies each element
of the mmeumonic matrix as in the two-dimensional case.  Also. notice that the inner loop
size decreases as dx.dy and dz are increased. This corresponds to removing a vertical plane

or multiple horizontal planes from the tensor cube mneumonic for each derivative of p. The
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ppkp(i, j. k). ppku(i, j, k), ppko(i. j, k). ppkw(i, j, k) left hand side equations only need to be com-
puted for the primitive variables and are reused for subsequent derivatives of the primitive vari-
ables. While this significantly reduces the number of equations required to be compiled by a
factor of 4(D) + 1)® compared to the Finite Difference method, this is still too many equations
and takes too long to create and compile the FORTRAN code for high accuracy 2D and all 3D
schemes. Despite the fower sets of equations. the Spatial-Temporal Form is less efficient than
the Finite Difference method because it needs to recompute the coefficients at every stencil. The
Finite Difference form has constant coefficients assigned to each element of the stencil: they do

not change with position.

3.2.7 Recursive Tensor Form Method in 3D

The Recursive Tensor Form method eliminates most of the complexity of creating and compiling
the FORTRAN code since only one-dimensional interpolation equations are used. This 1s a
significant advantage in three dimensions. The three-dimensional spatial Tensor Form method
is used to calculate the spatial coefficients. The time evolution formulation is determined in the
same manner as the two-dimensional case by developing a recurrence relation for the spatial-
temporal coefficients.

The basic relation utilized is:

(H(()j::;,c(l(’”‘ 5 - "’*"‘"Ut’;ji‘k‘:j"”‘*‘+‘“' epli+aj+bk+cs+d)
PN ) s e bbb ) G
(H:;jt)szi)(l jnA Mo R (g bk s d)
d:ttju(ri)(l(ju‘ Vo GRURIAOURY (f bk s+ d)

which is derived in a manner analogous to the 2D discussion of section 3.2.3.

The equations 3.78 provide a relationship between the derivatives of the spatial-temporal co-
efficients and can be used to recursively derive all other higher order spatial-temporal coefficients
when used in conjunction with the basic condition equations 3.79.

As in the two-dimensional case, notice that the following basic condition equations contain
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ounly first order derivatives.

cp(0,0.0,1) —mzcep(0,0,1,0) — myep(0,1,0,0) — maep(1,0,0.0) -

cu(1.0,0.0) = cv(0,1,0,0) — cx(0,0,1,0) (3.79)

cu(0,0.0.1) —cp(1,0,0,0) — mzcu(0.0.1.0) = my cu(0,1,0,0) — ma cu(1,0,0.0)

cr(0,0.0.1)

I

—ep(0.1.0,0) —mzcv(0,0,1,0) —myce(0,1,0,0) — ma co(1,0.0.0)

cw(0,0,0,1) —cp(0,0,1,0) = mzcw(0.0,1,0) — my cw(0,1,0,0) — mx cw(1, 0, 0.0)

These equations can now be used to find all other spatial-temporal coefficients by taking spatial

denvatives of equations 3.79. In particular. the following is true:

')(L+b+r‘

;)'—'[_‘(('])((), 0.0. 1)+ (mzep(0,0,1,0)) 4+ myep(0,1.0.0) 4 ma ep(1.0,0.0)+ cu(1.0,0,0)+

(J“l‘l/):‘
cv(0,1.0,0)+ cw(0,0.1,0))

')(1+b+V‘
,—;—f (cu(0.0,0.1)4+ep(1.0,0.0) + mz cu(0.0. 1.0) + mycu(0,.1,.0.0) + murcu(1.0.0,0))
iyt

(~')a+b+r-
Teig (cr(0.0.0. )+ ep(0,1,0,0)+ mzce(0.0. 1,0)+ my cr(0.1.0.0) + mrce(1.0,0,0))
dadyt s
(')41+1r+f‘
- (cw(0.0.0, )+ ep(0.0.1.0) 4+ mz ew(0.0.1.0) + my cw(0.1.0,0) + ma cwr(1.0.0,0))

drayb s

Now applying the basic relation equations 3.78 to these rewritten basic condition equa-

tion 3.80 and putting the term with highest t-derivative on the left provides the following
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relations:
eplaboed)y = —((14+¢)meeplab l+e,=1+d)+(1+b) mycplal+be,=1+d)+
(1+a)meep(l+abe.—1+d)+(l+a)cu(l+ab e ~1+d)+
(L+b) cv(a. l+b e, —1+d)+(1+¢) cw(a b1 +c.=1+d))/d (3.81)
cu(ab.eod) = —((1+a)ep(l +ab e, —=1+d)+(1+c)mzcu(a b l1+c, -1+ d) +
(1+b)y mycu(a, 1 +b.c,~1+d)+ (1 +a) mrew(l +aboe. =1+ dy)/d
cv(ab.ed) = —((1+b)epla,l+be,—1+d)+(14+¢) mzce(a b I+ -1+ d) +
(14b) mycv(a. l+bc.—=l+d)+ (1 +a) mree(l+abc—1+d)/d
cwlab.e.dy = —((1+¢)eplab l+e.—=1+d)+(1+c)mzce(ab 1+ =1+ d) +

(L+b) mycw(a. 1 +b.c.~1+d)+ (1 +a) mrcw(l +abc.—1+ dy)/d

Since the left hand side is always a t-derivative of one higher order. it is possible to do the

loop in figure 3.25 to compute all the spatial-temporal coefficient relationships:

Do[Do[Do[Do]

epligks]=-(((1 + k)*mz*ep(ij.] + k-1 + s) +

(1 + Frmy*ep(d + j k-1 +s) +

(1 + i)y*mx*ep(! + ij.k-t +8) + (1 + D¥eu(l +ij.k-1+5s) +

(1 + D*ev(i.l + jk-1 4+ 8) 4+ (1 + K)*ew(ij.d + k-1 + s))/s)

cufij.ks)=-(((1 + D*ep(l + 1g.k-1 4+ ) + (1 + K*mzreu(i).l + k-1 +s) +

(1 + PFmy*eu(id 4 jk-1+5) + (1 4+ iPmx*eu(l +1j.k-1+ s))/s)

ev[igks)=-(((L 4+ P *ep(id + J k-1 4 s) + (1 + kK)*mz*ev(ij] + k-1 +5) +

(4 Fmy*ev(id + kol +s) + (L4 i mx*ev(l + kel +8))/s) ew[ig ks]=-(((1
+ k) *eplig ] + kol 4+ 5) + (L + kY*mzrew(ij. ] + k-1 4+ 5) +

(1 4 p*my*ew(idl 4 k-1 4 s) + (1 + D¥mx*ew(l + ijk-1 +8))/5)

1.0 Min[O.3*0-k-j-i]]

§.0.0]

k.0.0]

5. 1.3%0):

Figure 3.25: Loop to compute all the spatial-temporal coefficients in 3D

This method does not produce any more equations. making the FORTRAN code easy to
create and compile.
With the spatial-temporal coefficients known, the primitive variables and their spatial deriva-

tives may be now he time advanced. Referring to the General Form of the exact local propagator
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in equation 3.66, only p(0,0,0.1) is needed since we are using centered difference schemes and
we only wish to time advance the data at the center of the stencil. Therefore, those equations

reduce to:

. 3{0)

p(0.0,0.1) = > ¢p(0.0.0,)t* (3.82)
3(}))

u(0.0,0.1) = ) cu(0.0.0,s)° (3.83)
3(0)

e(0,0.0.4) = > er(0.0.0,8)1° (3.84)
3(0)

w(0.0,0.4) = > cr(0.0.0,5)t* (3.85)

s

Derivatives of these primitive variables require higher-order spatial-temporal coefficients.

For example, p, is:
310

pr(0.0.0.6) =" ep(1.0.0.5)t* (3.86)

P
Higher order derivatives introduce factorial terms and must be accounted for. For example.

the General Form for the primitive variable’s derivatives is:

3(0)

A4t 1(0,0.0.1) o om
e Z ”‘b, —cpla.boe )t (3.87)

These equations are in a simple Taylor series form in time and may be more efficiently

computed using the well-known Horner's method [15].
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The loop in figure 3.26 efficiently advances all the variables on a stencil using Horner's method

DO[DO[DO]

factterm=fac(dx)*fac(dy)*fac(dz)

psum=0.0; usum=0.0: vsum=0.0; wsum=0.0

DOJ

psum=physicaltstep*((factterm * cp(dx.dy,dz sindex))+psum)
sindex,3*¥0.1.-1]

DOJ[

usum=physicaltstep*((factterm * cu(dx.dy.dz.sindex))-+usum)
sindex,3¥0,1.-1]

DO

vsum=physicaltstep*((factterm * cv(dx.dy.dz sindex))+vsum)
sindex.3*¥0,1.-1]

DO[

wsunm=physicaltstep*((factterm * cw{dx.dy.dz sindex))+wsum)
sindex.3*0.1.-1]

pg_:";y‘d:(i‘ J.&)=psum+{cp(dx,dy.dz.0)*factterm)

“Td{;&}iq‘d:("- j. k)y=usum+{cu(dx.dy.dz.0)*factterm)

r:i’_:f(]w‘d:(i. J ky=vsum+(cv{dx.dy.dz.0)*factterm)

u{;‘:'y(liyvd? (i, j. k)=wsum+(cw(dx.dy.dz.0)*factterm)

dx.0.D]

dy.0.D]

.dz.0.D]

Figure 3.26: Loop for advancing all variables with Horner’s method in 3D

Note that all the spatial-temporal coefficients (ep(i. j. k. s), culi, j k, s). cv(i. . k. s)) spatial-
temporal are solved in the first set of loops 3.25, then the primitive variables are advanced
in the next set of loops. In neither case are extensive equations required. In fact. the size
of the equations are constant for all MESA schemes in both of these loops. Ouly the spatial
coefficients require equations to he generated in Mathematica, but these are limited to relatively

small one-dimensional interpolation equations.

3.2.8 Cost Comparison of Methods in 3D

The three methods for implementing the MESA suite of algorithms will now be compared
for efficiency in terms of multiplication operation counts per grid point. Recall that in two
dimensions. the Recursive Tensor Form was the best choice for only a small subset of MESA

algorithms  fortunately, they were the algorithms of most terest in this work. Fortunately.
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again, the easy to create and compile Recursive Tensor form method also turns out to he
successful in three dimensions.

In three dimensions, there are 4(D+ 1) data elements per grid point. There will be this sane
number of evolution equations since all the 4(N3)(D + 1)3 data elements need to be propagated
using the MESA scheme. Since each evolved data element using the Finite Difference Form is a

linear combination of all the stencil’s data. the number of multiplies required per stencil is:

16(1 + D)° N3 (3.88)

For the constant coefficient linearized Euler equations. the only additional cost is cvaluating
the coefficients of the data elements once at the beginning, but this cost is quickly amortized
and therefore is negligible.

The Spatial-Temporal Form evolution method can use either the General Form or the Tensor
Form of the spatial interpolation. The Tensor Form and General Form are comparable in
efficiency when the General Forni is solved in line-groups. But the General Forin requires (0o
mauny lengthy, intractable equations and will not be considered further. The Tensor Form of
spatial interpolation has the following cost to compute the x-interpolated data at location S in

figure 3.20 1s bounded by:

N2 Y DD o
A Z > Z O+1=(1+D)*N2(1+0) (3.89)
k== IN/2) j=1—(N/2)yd:=0dy=074inder=0

And the cost to compute the y-interpolated data at location S2 in figure 3.20 is bounded hy:

0 D N/o

(¢}
X ) D Y Y O0+1=0u+DyN(1+0) (3.90)

itnder=0jindrr=0d:=0 k=1-(N/2)

Finally, the cost to compute the z-interpolated data at location S3 in figure 3.20 is hounded

by:

O O O
~ Z Z Y o+1=01+0) (3.91)

tinder=0jinder=0kindrr=0

The cost to evolve the primitive variables and their spatial derivatives using the Spatial-
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Temporal Form is:

O-d: O—dy O—dr P 3 3
371+ D (D=2(14+0
S S S 3T= ST+ D)y (D-2(1+0) (3.92)

8
d:=0dy=0dr=0kinder=0jindexr=0iinder=0

E
WE
WE

assuming the factorials are computed and stored once at the beginning.
The costs of evolving those same variables using the Recursive Tensor Form is divided be-
tween two sets of loops. One loop is for determining the spatial-temporal coefficients and 1ts

cost 1s hounded by:
30 0 0

Q
DI 1020(1 + 0)° (3.93)

s=1 k=0 =0i=0

The other loop uses those coefficients to evolve the variables and its cost is bounded by:
D D D
> Z ZQ4O+6:6(1+D)3(1+4()) (3.94)

As was done for the two-dimensional case. a table comparing the efficiencies of the three
implementations of the MESA scheme is shown in table 3.2. The columns have the same
meanings as before in table 3.1. An interesting result lere is that the Recursive Tensor Form
becomies the best algorithin much sooner in three-dimensions. Notice, however, that a 4 x4 x 4
stencil still requires at least a 23"¢ order algorithm to be competitive with the Finite-Difference
Form. At this level of accuracy. the effects of 64-bit precision dominate the calculation and
vields this algorithm ineffective. Therefore. only the 2 x 2 x 2 stencil actually Denefits from
the Recursive Tensor Form. Fortunately. this happens to he the best stencil to use in complex

geometries and is used extensively in this work.

3.3 Generating the FORTRAN Propagation Code

The methods of the last section will implement the MESA propagation scheme applied to the
constant coefficient. linearized Euler equations. The Recursive-Tensor method is the most effi-
cient when small stencils are used and small stencils synergistically work well with the needs
of problems involving complex geometries. Generating FORTRAN code is simplified with the
Recursive-Tensor fori since even the 215 order accuracy method’s equations are under 20 lines

fong in 2D and 3D. If large multidimensional arrays are used it is possible to write many of
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N | D | Finite Difference (FD) | Spatial-Temporal (ST) | Recursive Tensor (RT) | BEST
2100 2.10721 2.53656 2.95134 FD
21 3.91339 4.12901 4.32172 FD
2002 4.96994 5.10979 5.06985 FD
213 5. 71957 5.82125 5.58994 RT
2| 4 6.30103 6.37985 5.98934 RT
215 6.77612 6.83975 6.31373 RT
216 T.ATTR 7.23063 6.58691 RT
247 7.52575 7.5705 6.82288 RT
2| & 7.832067 787116 7.0305% RT
209 8.10721 8.14071 7.21606 RT
2|10 8.35557 8.38499 7.38363 RT
2011l 8.5823 8.60833 7.536441 RT
212 R.79087 8.81404 T.67689 RT
2413 8.9839% 9.00469 7.80682 RT
2 14 9. 16376 9.18235 T.92771 RT
2|15 9.33193 9.34867 8.04072 RT
310 2.635H48 3.09412 3.7638 'D
110 3.0103 3.49638 4.31027 I'D
1] 1 4.8164% h.13724 5.57892 D
1|2 5.87303 6.1436 6.30283 FD
11 3 6.62266 $5.87016 6.81204 FD
41 4 7.20412 7.43859 7.20525 FD
115 7.67921 7.90538 7.52565 RT
4 6 E.08089 8.30134 T.79605 RT
S 842884 8.64511 8.02996 RT
1| 8 R.73I576 894885 8.23608 RT
4 9 9.0103 9.2209 8.42031 RT
4 110 9. 25866 9.46724 R.DEG86 RT
40 11 9.48539 9.69232 8.73883 RT
4 12 9.69396 9.89951 887857 RT
413 9.88707 10.0914 9.0079 RT
11 14 10.0668 10.2702 9.12826 RT
115 10.235 10.4375 9.24082 RT
5} 0 3.30103 381201 4.72409 FD
610 353857 4.074582 5.05757 FD
6| 1 5.34475 5H.7096 6.30172 FD
6| 2 6.4013 6.71792 7.01865 FD
61 3 7.15093 7.44667 7.52455 FD
6| 4 7.73239 8.01686 7.91584 FD
6| 5 8.2074% 8.48501 8.2349%8 FD
61 6 8.600916 8.88204 8.50449 RT
6| 7 295711 9.22668 873774 RT
6| 8 9.26403 9.53111 8.94334 RT
G| Y 9.53857 9.80374 0.12717 RT
6 | 10 9. 78643 10.0500 9.20339 RT

Table 3.2 Cost comparison (log,, multiplies per grid point) of 31) methods
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these codes by hand as simple FORTRAN DO loops. However, these large multidimensional
arrays are difficult to keep in cache and can be less efficient than using multiple DO loops on
arrays with fewer dimensions. It is possible to use Mathematica as a precompiler by subdividing
large multidimensional arrays into many smaller arrays to take advantage of the RISC cache-
based architectures. This leads to more complicated FORTRAN code, but since the computer
is writing it and the code is easily compiled-this is a successful approach.

Also, it is necessary for testing purposes to provide initial conditions to all the variables
and this can result in many equations. For example, in 3D the c2010 MESA scheme has 5324
data elements at each grid point. Each data element needs an initial condition assigned to it.
This would therefore require 5324 equations be developed and implemented in FORTRAN. This
tedious procedure is hest accomplished with automatic code generation. Indeed, the ability to
quickly generate the many modestly complicated codes in this dissertation was necessary for the
grid studies performed: And it has resulted in higher personal productivity.

The idea of generating FORTRAN code using a symbolic manipulator is not new to this
work. Most of the computer algebra packages provide facilities for converting an equation into
(' or FORTRAN and more recently C++. The challenge in this dissertation has been to reduce
the complexity of the equations so that they could be coded and compiled. The Recursive Tensor
Form implementation and the Tensor Form spatial interpolator combine to provide relatively
simple codes: the 21°7 order ¢2010 3D MESA scheme can e translated into a fully independent
FORTRAN code in less than 5 minutes and compiled in about the same time.

A key benefit of automatic code generation is the ease of improving the FORTRAN code’s
efficiency and the ease of incrementally adding complexity to the FORTRAN code. Since floating
point operations are significantly faster than memory accesses in modern computer systems. one
way to improve performance is to organize memory accesses 10 minimize cache memory misses.
The process of rewriting a FORTRAN code consisting of a few complexly dimensioned DO loops
to very many less complex DO loops to improve efficiency can be time-consuming: but doing
the same activity within Mathematica is a relatively simple task. Also, since the forms of the
one-ditmensional equations in the Tensor form are the same in each dimension (only the indices
switeh). it is convenient to use a Mathematica rule to create the other equations rather than
solving the equations anew each time. The testing and development of these algorithms could

not have been done without the automation as it permitted fast and error-free testing of each
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algorithm.

The actual process of automatically generating FORTRAN code is simply an effort in pattern
matching and rules application and is more of an art than a recipe, much like programming.
The artificial intelligence language LISP is clearly a foundation for the Mathematica language.
The unified theme of representing everything as a symbol (data.function.equation.etc.) permits
flexible and intuitive programming that is invaluable in the code generation process. Procedural.
Functional, String-based, Rule-based, and List-based programming are possible in Mathematica
and used in this work. When creating a FORTRAN code, the FORTRAN is essentially output
from Mathematica as text. But. creating that text is made possible by assigning different
meanings to each part of the text in Mathematica. For examnple, in Mathematica it is possible
to represent an equation as a simple symbol. FORTRAN needs the actual algebraic form and
so the simiple symbol representing the equation is expanded into its fullest algebraic form. The
same equation form may be used slightly differently within the same FORTRAN code and if
there i1s a pattern to it. then a rule can he created to implement it. The representation of
complex relationships via symbols also aids in debugging code since when fully expanded into
FORTRAN code much of the higher structure is lost. For example, a single sign error is difficult
to detect but easy to do when many algebraic equations are being coded into ¢ or FORTRAN:
the automation prevents many of these occurrences.

Each FORTRAN subroutine has a Mathematica Module assigned to it. The shell of the
subroutine is simply stored as text in the module. By simultaneously writing the program in
Mathematica and FORTRAN, it is possible to eliminate many errors as well as confirm the
code generation process. The main body of the FORTRAN subroutine can vary significantly
depending upon which MESA algorithm is used; But in all cases. all changes to the main hody of
a particular FORTRAN subroutine is effected by ONLY its partnered module in Mathematica.
The goal is to have the entire program run in Mathematica and FORTRAN. Many of the
computer algebra packages provide a compile option in which it will convert its modules inta
FORTRAN. This only works with numerical modules: it does not incorporate the symholic
capabilities necessary for this work.

Typical coding challenges that needed to be resolved were:

Mathematica Mathematica had a bug in it on SGI systems that resulted in core dumps for

larger Groebner basis problems: a work around was to apply line-group solutions or gen-
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erate the FORTRAN code on a SUN workstation where the problem does not exist. Of
course. this error was fixed in Mathematica 3.0.2, at the time this work was nearly comi-
pleted. The Recursive-Tensor Form method only experienced this problem for methods

higher than twenty-ninth order.

Fortran The Fortran compilers on SUN, SGI. and IBM workstations have built-in continuation
line limits, and limits on the complexity of the equations that they will parse. They will
sometimes compile large formulas, but the compiled statements may fail to run during
execution. The symibol tables are also easily exceeded. Many of these limitations can be
handled with compile line options. FORTRAN90 in free form permits 39 continuation
lines. and in fixed form only 19 continuation lines [2]. These limits can prove too limiting
for the long formulas in higher order multidimensional algorithms; a work-around is to let
Mathematica breakup the equations into smaller subequations that are added together in
FORTRAN. Fortunately. this can be done in this work and the length of the equations are

minimized using the Recursive Tensor form.

Unix Unix shell commands like "sed” and “awk™ have file size hmitations on certain systenis: a
work-around is to keep the files small by doing pattern translation in Mathematica. This

problem is also avoided by using the Recursive Tensor form.

Computational Trade-offs must be made hetween increasing the work of Mathematica, and
increasing the work of the Fortran compiler, and increasing the work of executing the
Fortran code. Fortunately. the propagation code using the Recursive Tensor and Spatial
Tensor is simple enough for today’s technology. Unfortunately, those methods cannot
be applied to general geometry problems, in which case. the General Form of spatial

interpolation must be used.

Memory Forming a Groebuer basis for the ideal in equation 3.6 can consume all memory
unless variable reordering and matrix decomposition are performed first as discussed in

section 3.1.

Many checks are included in the automation process. but there is still a good deal of faith
involved in assuming that Mathematica is working properly for the larger problems. It is possible

to check the results from Mathematica with results from a competing computer algebra program
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such as Maple or Macsyma, but this has not yet heen done since the numerical results show
good agreement with the analytical solutions in chapter 7. Despite these validation attempts,
unexpected problems can develop. For example, Mathematica 3.0 uses a different Fortran code
output format than does Mathematica 2.2. The outputs are essentially the same except the 3.0
version automatically puts a decimal at the end of each integer whereas the 2.2 version does
not. This difference generally is not noticed except when two integers are divided. Without the
decimal points, integer division results in a truncation of the decimal information. Since the
development of the MESA algorithm is automated and the equations are lengthy, this problem
went undetected at first since the initial Jower order test cases did not have integer division in
their equations. These examples indicate the difficulties that can occur due to software and
hardware limitations. Since the systems are not perfect, it is important to automate the code
generation process to minimize the eflects of human mistakes and maximize the detection of
system errors. The cumulative effect of the many random areas in which things can go wrong
1s why a recipe 1s not possible for the creation of code.

The entire FORTRAN code generation software written in Mathematica for 2D problems

s approximately 57 KBytes and for 3D problems is approximately 96 KBytes. This software

s reused to generate all the 2D biperiodic and 3D triperiodic boundary problems in FOR-
TRAN. The ¢2010 MESA scheme FORTRAN code written by the Mathematica software in 2D

18 approximately 377 KBytes and in 3D is approximately 1459 KBytes.
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Chapter 4

Wall Boundary Mapping in

Two-Dimensions

The previous chapters described the development of the MESA scheme for solving the linearized
Euler equations in time on a C'artesian mesh without solid wall boundaries. The addition of geo-
metrically complex boundaries complicates the solution of the linear system of equations in time.
The addition of boundaries can create instabilities in an otherwise stable MESA scheme [100]
and reduce its accuracy. In addition. the complexity of formulating the problem in a FORTRAN
code can be enormous if not automated [116].

This chapter presents the automated methods necessary for the inclusion of solid wall hound-
aries. A wall boundary is the locus in computational space which corresponds to an actual
physical boundary. Appropriate conditions for the flow at these boundaries are assumed to be

known for all time.

4.1 Introduction

Many methods for grid generation have been developed [I11]. Most of the methods require
considerable human interaction for successful implementation with realistic geonietries. It can
take months or vears to generate a single grid for a real application. A method is presented m

the following sections that uses complex but automated MESA schemes on an easily generated
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Cartesian grid. The use of Cartesian grids significantly reduces the grid generation effort at
the expense of increasing the complexity of the numerical scheme. Fortunately, this complexity
15 dealt with in an automated manner. Various Cartesian-based grid approaches have been
used in the past [115], including recently developed wall boundary conditions with ghost cells
for the DRP scheme [106]. Renewed interest in the approach is due to continued difficulties
with body-fitted grid generation (structured. unstructured, multiblock, etc.). and the relative
ease of automating the generation of Clartesian-based grids. Traditionally. the essential issue for
C'artesian-based grids has been either computing and characterizing the geometric intersections
between the Cartesian flow field cells and the surface geometry (using a flux formulation). or
the development of ghost cells outside the boundary with data values chosen to maintain well-
posedness of the finite-difference scheme. For example. a 3D Cartesian mesh is used in solving
the finite volume form of the Euler equations in reference [79]. and a 21> Cartesian mesh is used
to solve the Navier-Stokes equations in [17]. However, a new approach has been successfully
implemented in this work that uses mapped fill points inside the boundary. This mapping
considerably simplifies the solution of near boundary grid points (fill points) as will be shown
later. This mapping is further simplified by using very small stencils, a core capability of the
MESA schetue.

Cartesian meshes must be able 1o vary the level of resolution according to the features of
both the geometry and flow field unless an efficient higher accuracy algorithm with very high
resolution can be used. When a grid is locally refined, an efficient data structure for nearest grid
neighbor caleulations is the Alternating Digital Tree [17]. The mesh resolution directly affects
the accuracy and the CFL stability constraint: And finer meshes generally require more time
steps to advanee a solution through time. Local grid refinement can he avoided by increasing
the accuracy of the MESA scheme which is used locally. By including more derivative terms
at the local grid points. the stencil size remains unchanged and the CFL stahility constraint
is therefore unaffected. This dissertation has not addressed the issues of adaptive resolution
but the special advantages of adaptive algorithm resolution via the MESA approach instead of
adaptive mesh resolution are significant and will be developed in future work. In this work. the
more general issue of solving complex geonmetry problems is developed.

Near a boundary surface, the Cartesian mesh will have grid points on either side of the

boundary. and the boundary location will generally fall hetween grid points. This leads to
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the well known problem of clipping cells [10], with potentially small cell fragments left inside
the computational domain. If the boundary points are used instead of regular grid points,
the stability limit on the time step size will in general be lowered. This problem is typically
handled by locally increasing the grid density and locally decreasing the time step size. This
results in more computational work and a loss of accuracy in extrapolating from finer to coarser
meshes [10, 17). This dissertation has used the concept of mapped fill cells to maintain the
accuracy and the ('FL condition across the entire computational domain. Mapped fill cells and

their application will be the topic of the remainder of this chapter.

4.2 Definitions and Approaches

Consider a square or cubic uniform Cartesian mesh of grid points. Fach grid point is labeled m
one of four different ways. either as an interior grid point, a needed fill grid point. an unneeded
fill grid point. or a boundary grid point. Next. assune some solid wall geometry is superimposed
into this mesh. For example. a square has heen used in figure 4.3 in which the interior of the
square contains the acoustical perturbations modeled by the linearized Euler equations. Those
grid points that fall within or on the edge of a solid object are labeled “houndary grid points™.
Those grid points within the solid object are not used since no flow travels through the solid
boundaries. But houndary grid points on the edges of the object are used for calculating the
effect. of boundary conditions on the interior grid points. The “interior™ grid points are those
points which do not require information from a “houndary™ grid point for their time advancement
(ie. their stencil is completely within the flow field). The remaining grid points are labeled as
“needed fill” points. except that do not have an "interior™ point adjacent to them, they are
labeled as “unneeded fill” points. An unnceded fill point can be seen in figure 4.3 in the corners
of the square. The unneeded fill points are not required by any of the interior grid points for
their time advancement. The specific laheling of a given (‘artesian mesh’s grid points depends
on the stencil size. In figure 4.3 the stencil size is either (2 x 2) or (3 x 3), corresponding to

MESA schemes c20D) and c300 respectively. with 12 > 0.
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Figure 4.1: One-Dimensional Wave Equation Boundary Treatments
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Approaches

Several approaches using a c300 MESA central stencil in one and 1wo spatial dimensions shown
in figures 4.1 and 4.2 will be explored to motivate the particular approach adopted by this
dissertation. The one-dimensional and two-dimensional wave equations will be considered. The
new solution value [77t1 in figure 4.1 can be calculated by the MESA propagation algorithm

using the three data values U7 177

w0 and the data value [7" is actually located on the other

side of the boundary. so that it is not even defined. The data value Uy is said to be located
at a “ghost point™ outside of the domain for the problem. The houndary condition is given by
specifving data along the boundary for all time. The houndary in figure 4.1 is located on the {
axis.

Several possible boundary treatments can be considered for this example. The most obvious
approach is to use a nonuniform stencil for interpolation, and solve for [77*1 using the boundary
data U] instead of the ghost point data {7} This shortens the distance hetween I’ and the
stencil point to its right. It is now necessary to reduce the time step size in order to satisfy
the C'FL stability condition. Another idea is to use the boundary data that occurs on the
characteristic between the boundary and the point where a new solution is desired. This method
of calculation should maintain the CFL condition. but it would require knowing the slope of the
characteristic curves (and surfaces in higher dimensions). and then computing their tersections
with the boundaries. A third idea that was attempted in this work was to use the boundary
data (',',’“ at the new time level. This approach eliminated the need to calculate the slopes
of the characteristic base curves and surfaces, and it included all the necessary information
for caleulating a new solution value, but it was not stable for A = % < 1. In fact. stabibty
unexpectedly improved for the ¢3ol algorithm by choosing A > 1. These approaches were not
pursued further.

Instead. a reduction in the complexity of the finite-difference scheme for propagating the
solution is accomplished by developing an approach that uses a Cartesian grid that is equally
spaced throughout the physical domain. One possible way to achieve this is to label "]l and
171+ ag fill points that are not time propagated with the usual MESA scheme. Instead. a linear

spatial interpolant is found at each time step that is a function of 177" and {7}, Then with pomt

['" solved for using that spatial interpolant, it 1s possible to time advance ']} to [+ using
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the stencil points U7]', {77 and U’} (using the c300 MESA scheme).
Now consider the two dimensional convective wave equation where the same idea of spatially
interpolating the fill points introduces the additional complexity of finding a mapping of the fill

points to a general wall geometry.

du u du
e ;‘IT.— Q’U,-,—:U. 1.1
o Plgn Mgy (1.1)
with general solution
ula, y ] =YD was(r = M) (y — Myt)”, (4.2)
n=0;3=0

Consider the second order algorithm (MESA scheme ¢300) on a uniform 3 x 3 square stencil
with solution values hut no derivatives at each grid point. A typical problem with a two di-
mensional boundary surface is illustrated in figure 4.2. where a corner of the bounding surface
intrudes into the stencil. The wall boundaries are located on the planes formed by the (x, t)
axes and the (v.t) axes in figure 4.2, Notice that three data values on the steneil required
for time advancing '), are at ghost points (U3, U7, U, on the other side of the bound-

ary. Just as in the previous one dimensional case, it would be desirable to use the interior

grid points (7" )" L U Ul o U ) to interpolate the values of the three fill points
(U0 U3 U0),). And then to use these "filled in” fill points to time advance (77 ['? and

["}, p using the standard MESA techniques. Notice however, that the three advancing points do
not have the same stencil, but do share common fill points. The fill points are calculated once
for each time step before the interior grid points are advanced.

The polynomial interpolation function for the fill points is determined by solving a linear
systemt formed by the known interior grid points and the boundary conditions applied to each

unknown fill point mapped to a boundary. The 3 x 3 stencil centered on 7 in this example

meo

has 6 known data values on interior grid points and three unknown fill points.
The ¢300 MESA scheme is a second order scheme and therefore requires at least second order
accuracy in its boundary condition solutions as well. In this simple example. the data values

(0, 00, 0, ) can be used directly along with the 6 interior grid points to form a second order

mterpolant. This is achieved by mapping the fill points horizontally to the nearest boundary
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Figure 4.2: Two-Dimensional Wave Equation Boundary Treatments
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at which point the boundary condition(s) are applied. If the interpolant function is written as
a Lagrangian polynomial, the linear system will require inverting a 3 x 3 system in this simple
wave equation example and is discussed further in chapter 5 {The Lagrangian form will have
only 3 unknown coefficients, the fill points). The rank of the linear system will be equal 1o the
number of fill points which will never exceed 7 as shown later.

One requirement to forming a consistent linear system is that never more than 3 stencil
points be collinear when using the ¢300 MESA scheme. It is thus important that the mapping
of fill points to a boundary of general shape provide this linear independence of stencil point
locations, while minimizing the distance from fill point to boundary to maximize accuracy in
the spatial interpolant. Therefore. one of the central issues that needed to be solved was how to
generate, 1 an automated way, a mapping for cach fill point to a boundary of general geometry
that forms linearly consistent systems of mterpolants of required accuracy and stability.

A sample mapping for a unit box rotated 45 degrees relative to the grid is presented in
figure 4.3. The arrows indicate where the fill point 1s mapped onto the boundary. The bound-
ary conditions are then applied at these locations and a consistent spatial interpolant is thus

generated.

4.3 Stencil Constraint Tree

The problem of finding a mapping for all fill points to the wall boundaries is simplified by first
standardizing the dimension size of the stencil to 3. Higher order schemes will be achieved by
adding more derivative terms into the current stencil instead of the typical approach of enlarging
the stencil. This standardization fits nicely into the ¢2oD) and e300 MESA schemes with the
selection of D dependent on the accuracy and resolution required for the particular simulation.
The ¢2oD) MESA schemes use a staggered grid, two-step process that results in effectively using
a3 x 3 stenell with artificial dissipation as shown in figure 4.4. The "X grid points in this figure
are evolved first using it’s 4 neighboring grid points with a half time-step. Then the center grid
poit is evolved using the information from the newly computed “X™ grid points again with a
half time-step. The set of fill grid points is the same for the c20D and ¢30) MESA schemes.
The ¢20D scheme’s fill points may be interpolated using either a 2(1) + 1) — 1 order interpolant

based upon a 2 x 2 stencil or the 3(/2 4 1) — 1 order interpolant based upon a 3 x 3 stencil. The
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Figure 4.4: Staggered Grid with C20D MESA scheme

advantage to using the smaller stencil is the simplicity of mapping its fill points to the houndary
(figure 5.7). The disadvantage is that it is no longer possible to overlap the stencils—numerical
experiments suggest. overlap is important to maintaining stability as discussed in chapter 5. In
addition. the ¢300 method is the simplest, useful algorithim and was the first method at tempted
m this work. Therefore, the 3 x 3 stencil will be dealt with first.

With this standardization (3 x 3 stencils), it is possible to organize the mapping of the fills
into subproblems consisting of 3 x 3 groups of grid points {(corresponding to a particular stencil
configuration) in which all the fills in each stencil configuration are mapped to the wall boundary
and a local spatial interpolant is developed using information from only the interior data points
and mapped boundary locations for each steneil configuration.

Recall that the grid points are identified as “interior™, “fill", or “boundary™. And the fill
points can be further labeled as "needed™ or “unneeded”. In addition. the houndary points
can be further labeled aligned with the wall boundary or unaligned. The principles discussed
next apply to any labeling schenie-as many labeling schemes have been used in this work.
Eacli labeling scheme permits a different approach to mapping the fill points. For pedagogical
purposes, assume the grid points can be labeled into three categories: interior, fill. or houndary.
With no constraints imposed on the grid points in the 3 x 3 stencil, there are 3° = 19, 683 possible
stencils configurations. That is. the stencil as a whole may have 19,683 unique manifestations.
Each will need a unique mapping for all its fill points. if the stencil configuration contains
any. In three dimensions. without natural constraints imposed. the 3 x 3 x 3 steneil has 327 =
T.625. 597484, 987 possible stencil configurations.

Fortunately, there are natural constraints that can be applied that makes this problem
tractable,

A method similar to Waltz's procedure for symbolic constraint propagation [120] provides
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a way of reducing the possible stencils to a surprisingly manageable set. As is usually the
case in artificial intelligence applications, the choice of representation of the problem can assist
its solution. In this case. a successful representation of the stencil configurations is in a tree.
The tree data structure’s leaf nodes are NOT labeled, but it's branches ARE labeled. This
data structure efficiently stores all possible stencil configurations in its tree branch structure,
and enables a recursive building and pruning algorithm to efficiently find all possible stencil
configurations. This tree data structure shall be referred to as the Stencil Constraint Tree.

The locations of the grid points in a stencil are labeled in row-major order starting with the
bottom row as shown in figure 4.6. These lahels uniquely identify each gri-! point’s location
within the stencil. A branch in the stencil constraint tree represents hoth a grid point’s position
and its label. The branches are organized into groups of three. Each group represents a particular
grid point location. The relative position of the branch within a particular group of three
branches determines the grid points label. If the branch is the first branch in its group, i
represents an interior point. The second branch in the group represents a fill point. And the
third branch in the group represents a boundary point. For example, in figure 4.5 all possible
branch numbers for a 2 x 2 stencil are shown. A branch number of 7 is in position 3 and has
label 1. According to figure 4.6, position 3 corresponds to the top-left grid point in the 2 x 2
stencil. Sinee it has label 1, it is an interior grid point as well. Similarly. branch number 12
is in position 4 and has label 3. Therefore this branch number corresponds to the top-right
grid point being a boundary grid point. This branch numbering scheme can be applied to any
size stencil with any number of grid point labels. A given branch A will be connected to other
branches B in the tree only if the other branches represent grid points that are adjacent to the
grid point represented by branch A. In this way, the stencil constraint tree succinctly represents
a given stencil’s topology and all it’s configurations. An example stencil constraint tree with its
branches labeled is shown in figure 4.7,

As discussed. the number of stencil configurations is enormous if all configurations are al-
lowed. Fortunately, the natural constraints in the problem can be exploited to reduce the size

of the stencil constraint tree. Some of the natural constraints are:
1. Each interior point must have no houndary types adjacent to it

2. Each fill point must have a houndary point adjacent to .
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Figure 4.5: Stencil Constraint Tree Branch Numbering Scheme

3. Each boundary point must have no interior types adjacent to it.

Those constraints can be applied during the construction of the stencil constraint tree. For
example, in the 2 x 2 stencil with interior, fill and boundary grid point types. natural constraint
number 2 implies that a branch labeled 11 (it’s a fill grid point) MUST be connected to a
branch labeled 3.6, or 9 (a neighboring boundary point). Also, the tree structure itself can be
exploited during its construction to form additional natural constraints that significantly reduce
its growth. This is an algorithm in which the parents learn from the children to avoid producing

too many children!

4.3.1 Building the Tree

Assume we are interested in building a stencil constraint tree for the 2 x 2 stencil with the
assumption that grid position 4 is of interior type and that each grid point is either au interior.
fill. or boundary point. Every node will have at most 12 branches as shown in figure 4.5. A
completed stencil constraint tree showing all possible stencil configurations with an interior erid
point in the top-right position is shown in figure 4.7. The number of leaf nodes on the bottom
of the tree equals the number of possible stencil configurations (8 in this case) under the given
assunptions.

Notice in figure 4.7 that only the branches are labeled and that it has a tree depth of four.
which corresponds to the number of grid points in the stencil In addition. the first level contains
only branches corresponding to grid point position 4, the second level contains only grud point
position 3 branches. the third level contains only position 2 branches, and the fourth has only
position | branches. A 3 x 3 stencil would have a tree depth of nine and a 3 x 3 x 3 stencil would

have a stencil constraiut tree depth of 27.
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Figure 1.7: Stencil Constraint Tree, N=2. Assume Position 4 is an Interior Grid Point
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Figure 4.8: First Node Expansion of Stencil Constraint Tree

Building this tree is done by starting at the top of the tree. Branch 10 falls between 10
and 12 making it the fourth group of three branches as shown in figure 4.5. so it corresponds
to grid position 4, the top-right of the stencil. Within that group of 3, it is the first branch.
so it corresponds to label 1. interior. The first branch represents the given assumption of node
1 that it is of type "interior”. Since it is an interior node, it cannot by natural constraint
number 1 have neighboring nodes of type “boundary™ (label number 3 in figure 1.5). If there
were 1nore assumptions, such as the top-left position is a fill point, then an addition branch
number & would be on the first level of the constraint tree. The current branch number 10 in
the top level of the tree constrains the choices of the branches in level 2. In particular, branches
3.6.9.12 are removed from consideration in level 2 of the tree since the boundary points cannot
be adjacent to the interior poiuts. In addition. an additional constraint is imposed to prevent
repetitive loops in the tree. Specifically. a parent node cannot repeat its own position number
or that of its ancestors. Therefore, branches 10, 11, and 12 are also removed from consideration
in level 2 of the tree. The first node in figure 4.8 may only expand branches numbered 1.2.4.5.7.
and 8. The numbering underneath the nodes in the figure corresponds to the branch’s number.
Without the natural constraints. all branches (1 through 9) would be expanded.

The figure .7 is the completed stencil constraint tree and therefore does not show branches
L24 and 5 since they are later pruned in a post-processing step that removes redundancies.

Branches 1 and 2 correspond to grid point position 1. The children branches (level 3 and 4)
underneath these branches (level 2) will not contain grid point position -4 {branches 10.11.12)
since the first level determined it already, nor will they contain branches representing position
I stnee the second level has determined it. The sub-trees under branches | and 2 of leve] 2 {cor-
responding to position 1) are recursively constructed using the same procedure for the current

parent branch. After these sub-trees are expanded. they contain all possible permutations of
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the remaining grid positions (2 and 3). The permutations represented in the sub-trees will be
restricted under the assumptions of its ancestors branches, parent and grandparent (level 2 and
level 1), in the constraint tree. The branches that were not expanded in these two sub-trees
represent impossible labels for grid positions 2 and 3. under the assmmption that grid position 4
is an interior point. The set of impossible labels is passed from each child to its parent branch.
once the child has completed constructing its sub-tree.

This list of impossible branches is passed to the next child on level 2 that represents another
grid position (branch 4 in figure 4.8). Branch 4 on level 2 still has the same parent branch (10) as
branches 1 and 2 on the second level. The union of the set. of branches contained in the sub-trees
of branches 1 and 2 represent all possible permutations of grid positions 2 and 3. It would not
he possible for grid position 2 or 3 to be labeled type 3 (boundary) since branches 6 and 9 do not
oceur in either of the sub-trees under branches 1 and 2 of the second level. Therefore. the list of
illegal branches passed to the next child (branch 4, level 2) includes {6.9.10,11.12). Therefore,
the branch number 4 on level 2 builds its subtree utilizing constraint information from its left
sibling branches. 1t's parent. branch 10 on level 1 receives this list. when the sub-tree under
branch 2 on level 2 is completed. The parent branch then passes this information to branch 4 on
level 2. If branch 4 were one of the illegal branches. then the parent branch 10 on level 1 would
not expand branch 4 on level 2, but instead would skip to branch 5 or the next legal branch.

After branch numbers 4 and 5 have completed constructing their subtrees. additional illegal
branches may be found. The subtrees under branches 4 and 5 (on level 2) represent all possible
values of grid positions 1 and 3 constrained by the illegal hranch list from the branches 1 and 2
on level 2. These additional illegal branches are added to the current list and passed to the next
group of branches in level 2 (branches 7 and 8). Note that it is possible to pass the additional
illegal branches to the already completed children on the left and prune their subtrees. but this
was not needed in this work. Once the children on level 2 have constructed their sub-trees the
stencil constraint tree is completely built. All subtrees are built using the same recursive preorder
traversal construction with natural constraint propagation among siblings. Each recursive call
returns a list of illegal branches that the parent receives from each child. The parent always
passes on this list to the next child created.

The stencil constraint tree now contains all possible stencil configurations in its stricture as

shown in figure 4.9. Each configuration is found by simply traversing the tree from top to bottom.
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Figure 4.9: Unpruned Stencil Constraint Tree

Each umque path represents a possible stencil configuration. However. the tree as currently
constructed has many repetitive solutions. For example, in the 2 x 2 stencil constraint tree in
figure 4.9, the first branch traversed in any path taken will be grid position 4, label 1 (on level
1). 1t 1s possible for grid positions 2, 3. and 4 to be labeled | (interior) as well without violating
the natural constraints. This corresponds to branches (1.4.7.10). According to the unpruned
stencil constraint tree there are 6 paths that give the same result: (10.1.4.7).( 10.1.74).(104.7.1).
(104.1.7), (10.7.1.4), and (10.7,4.1).

This inefficiency is eliminated by pruning the tree as follows. Starting from the top of the
tree. remove all branches from the tree that do not correspond to grid position 4 on the first
level. In this case. this does nothing since only branch 10 is ou the first level. Next. remove
all branches from the second level that do not correspond to node 3. This removes branches
[.2.-1and 5 and their subtrees. Repeat this for the rest of the levels. After this. the stencil
constraint tree is pruned and shown in figure 4.7, The tree now efficiently represents all steneil
configurations. This pruning process requires that the order of grid positions selected for pruning
be such that they are topologically connected in the tree. For example, in the 3 x 3 case grid
position 4 is not connected to grid position 6 and so should never he placed together in the
pruning list. Failure to do this results in a destroyed stencil constraint tree.

This pruned tree requires only 4 tests to determine if a given stencil configuration is correct
by simply traversing the four levels of the tree from top to botton. If a path from top to bottom
matching the stencil configuration does not exist, the steneil configuration is incorrect. The 2 % 2

stencil with an interior grid point in the top-right bas a total of cight possible configurations. If
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all eight configurations were stored as arrays, and each grid point was naively tested, it would
take 32 tests to reject a given 2 x 2 stencil. This represents eight times more effort than using the
stencil constraint tree. The savings are significant for this simple problem, but are absolutely
essential for more complex stencil configurations in three dimensions. For example. a 2 x 2 x 2
stencil in three dimensions requires only 8 tests if the stencil constraint tree is used compared
to (2% x & = 2048) for the array method when it is assumed the corner grid point 1s of type 1,
“interior”. Also notice that without natural constraints there are (3%=6561) permutations of
the 2 x 2 x 2 stencil configuration. Employing natural constraints and propagating them in the
stencil constraint tree reduces the complexity of mapping the A1l points.

The ahility to efficiently test all stencils used for the fill points is important. In some cases,
the CAD input geometry file may be incorrect. the geometries” curvature may be too steep for
the given grid resolution, or a degenerate case has occurred that needs human assistance. By
quickly testing all stencil configurations across the entire computational domain. these hard to
identify problems are quickly dealt with.

Note that representing the stencil configurations in an undirected graph such as the stencil
constraint tree without propagating the natural constraints results in an NP-Complete algo-
rithm. This is because all paths must be traversed such that all nodes are visited as in the
Traveling Salesman Problem [20]. which is an NP-Complete problem. Fortunately. the number
of edges in the stencil constraint tree decreases as the tree is built due to the propagation of the

natural constraints.

4.4 Recursive Boxes

The recursive algorithm just described was implemented in Mathematica which is itself de-
signed to operate efficiently with trees. All Mathematica expressions are represented internally
as trees [122]. Unfortunately. the recursive stencil constraint tree algorithm described in see-
tion 4.3 took too long to run on stencils with widths larger than N = 2. Rather than improving
performance by implementing this algorithmin a lower level language. an improvement in perfor-
mance was achieved with a meta-algorithm that made use of the constraint tree algorithni. This
“meta-algorithim™ recursively calls upon the stencil constraint tree algorithm to solve smaller

sub-problems and then collects these results to form a global solution.
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Figure 4.10: Stencil Grid Box Position Labels for N=3

The 1dea is to divide up the stencil into overlapping 2 x 2 hoxes and to solve these boxes using
the constraint tree algorithm just described. The advantage to this is that the pruning process
happens after each 2 x 2 box is solved; This results in a far smaller tree during its construction.
The boxes overlap so that the result from one box can restrict the neighboring boxes via the
natural constraints of the problem (The natural constraints only apply to neighboring grid
points).

For the N=2. 3. and 5 two dimensional stencils there is 1, 4, and 16 overlapping boxes
respectively covering the entire stencil domain. In figure 4.10 the four boxes of the 3 x 3 stencil
is shown. The labeling of the 2 x 2 boxes is done in the same manner as the individual grid
positions were labeled for the constraint tree (row major order. left to right, bottom row first.
but in overlapped groups of four).

Finding all possible stencil configurations for the 3 x 3 stencil is achieved by starting with
any of the boxes i figure 4.10 and proceeding in a recursive way to solve all the boxes. It
s important that the list of boxes are chosen so that each successive box is overlapped by a
previous box. In the case of a 33 stencil. all four boxes overlap each other and so any ordering
is appropriate. A box is solved by simply calling the stencil constraint tree algorithim to find all
possible stencil configurations for the 2 x 2 set of grid points in the box.

Each 2 x 2 box may be restricted in two ways. First, one of its grid points may be assumed
to he of some type (interior. fill, or boundary) in which the constraint tree algorithm can easily
find solutions. Second. a diagonally neighboring box will introduce natural constraints as shown
in figure 4.11.

For example, solving the 3 x 3 stencil for all possible configurations in which the center grid
point number 5 1s a fill point (branch number 14) using the Recursive Box method could proceed

as follows. First, the stencil constraint tree algorithim is called with the assumption that grid
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point location 4 is of type 2, "Fill" (Note that the local grid location labels are based on the
2 % 2 stencil relative to each box). All possible configurations are found for box 1 in figure 4.10.
Next. for each 2 x 2 stencil configuration in box 1, the set of permissible stencil configurations
for box 2 is then found by again calling the stencil constraint tree algorithm. For each stencil
configuration in Box I, the configurations in Box 2 will be based upon the two grids in Box .
Its local grid locations 1 and 3 are defined by the values in Box 1 at its local grid locations 2 and
4 (case 7 in figure 4.11). Therefore. in solving Box 2 the constraint tree algorithm is mitially
given a list of illegal branches as described in section 4.3. The illegal branches are simply those
branches representing local grid positions 1 and 3 that are not of the correct type defined by
Box 1 (4 illegal branches total). Next, for each 2 x 2 stencil configuration found for Box 2. the
stencil constraint algorithm is applied to Box 3. This time, Boxes | and 2 are already defined
and will restrict the stencil configurations in Box 3. In particular, Box 3 will have its local grid
position numbers 1 and 2 defined by Box I's local grid position numbers 3 and 4. In addition,
hox 2 has a defined local grid position number 4 that will restrict the choices of the neighboring
grid point in Box 3's local grid position number 4. Therefore, if Box 2 has an interior point
in its upper right corner, then box 3 may not have a boundary point in its upper right corner
(tree branch 12). When the constraint tree algorithm is called. it will not only have a starting
list of itlegal branches from the two defined grid points from box L. it will also be given the list
of illegal branches introduced from the effect of Box 3. This situation is represented by cases 4
and 5 in figure 4.11. Next, for each configuration found in Box 3, which was restricted by the
definitions and influence of the configurations in Boxes 1 and 2. the stencil constraint algorithm
is applied to Box 4 to find all of its permissible stencil configurations. This time, Box 4 will
have only 1 undefined grid point (its upper right position 4). The constraint tree for Box 1 will
have illegal branches (6 illegal branches) corresponding to the 3 defined grid points. This case
can be represented as the superposition of the 3 cases 5, 6. and 7 in figure 4.11. After these
procedures. all of the 2 x 2 stencil configurations in the boxes have been found and the list of all
possible 3 x 3 stencil configurations is gathered by simply unwinding the recursive calls as shown
in figure 4.12. The set of 2 x 2 stencil configurations for Box 4 which was restricted by eaclh set
of 2 x 2 stencil configurations in Boxes 1.2. and 3 of figure 4.10 may be combined to provide a set
of 3 x 3 stencil configurations for the entire stencil. For example. in figure 4.12. each numbered

box corresponds to a specific 2 x 2 stencil configuration for the aprropriate hox i figure -4.10.
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Figure 4.11: Box Recursion Method: 8 Neighboring Box (‘ases

Across the top row of boxes in figure 4.12 the Boxes 1, 2, 3 and 4 form one complete 3 x 3 stencil
configuration. Now. backtracking one step from Box 4 back to Box 3 and then taking the next
path to the second Box nuiber 4, a second 3 x 3 stencil configuration is found. This process
repeats until all possible 3 x 3 stencil configurations are determined. This process is efficient
since the constraint tree algorithm is applied only to small 2 x 2 stencil sub-problems.

Notice that not all eight possible two-dimensional cases in figure 4.10 were used in solving the
33 stencil in this example. The ordering of the boxes and the size of the stencil determine which
of the eight Box Recursion method cases are employed. Larger stencils will still be subdivided

mto smaller, overlapping 2 x 2 sub-problems.

4.5 Symmetries and Simplifications

With the tools described in the previous two sections, it 1s possible to examine in more detail the
structures of all possible stencils. It 1s nmportant to quickly reject nmpossible stencils from con-
sideration so that a systematic mapping may be developed. In most applications. relatively few
of all the possible stencil configurations are encountered, but it is still necessary to exhaustively

liandle all cases. Once all the stencil configurations are known it may be possible 1o assign a
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Figure 4.12: Recursively Collecting 2 x 2 Sub-Stencil Configurations

specific mapping to each case that provides a linearly consistent system for spatial interpolation
at each fill point.

One approach to achieve this was to find all possible stencil configurations for a b x 5 stencil
in which the only assumption is that the center grid point location 13 was a fill point. Then. for
each of these configurations simply map any fill point in grid point locations 7.8.9.12,13,14.17.18.
and 19 to the boundary points in grid point locations 1.2.3,4.5,10.15.20.25.24.23.22.21 16,11, and
6. Each fill point needs to be mapped to a unique grid point location and no more than three
grid points in the new mapped stencil are permitted to be collinear with respect to the x and
v axis. The former can only be satisfied if enough houndary points exist. The latter must be
experimentally determined using the tools of the previous sections. Unfortunately, it was found
that more fill grid points than boundary grid points occurred in many realizable stencils. If
two fills are mapped to the same aligned houndary grid point. it is possible for hoth points
1o intersect. This reduces the spatial interpolant’s linear systein to only 8 degrees of freedom
instead of the 9 required for a two dimensional linear system on a 3 x 3 stencil to be solved. If the

boundary grid point is unaligned with the physical boundary then it is possible to map multiple
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fills towards the same boundary grid point without an intersection occurring. The number of
possible stencil configurations is quite large, even with the natural constraints applied. For
example, a 3 x 3 stencil with the center grid point number 5 assumed to be a fill point has 8,456
legal stencil configurations that need to he mapped. This mapping ideally would only depend
on the 3 x 3 stencil, but to verify this all possible stencils need to be generated. It would take
11 days to compute this larger set. Without constraints imposed there are 274 = 16,777,216
stencils to consider (each point is a boundary or not). Even with constraints imposed the set
is still larger than will actually occur in applications since the outer stencil points are actually
constrained by their outside neighbors which are not known without including all 7 x 7 stencil
configurations.

Fortunately, it is possible to reduce the set of possible stencils by applying symunetry and
additional asswmptions to the stencils. A key assumption is that no stencil will be completely
enclosed by solid walls (ie. a stencil will have at least one neighboring and overlapping stencil
in the geometry). However, if it is completely enclosed. then locally increase the grid resolution
until at least two overlapping stencils fit within the enclosed area. With this assumption, a
3 x 3 stencil will have an interior grid point on at least one of its edges, and a houndary
grill point on the opposite side. The center will always be a fill point. The assumptions are
shown in figure 4.13. At least one of those cases in the figure are assumed to occur in every
stencil.  Assumptions S1, 83, S5, and S7 have 36 possible stencil configurations each (using
the Box Recursion method); And assumptions S2. S4. S6 and S8 have 144 configurations each.
The fact the odd and even numbered assumptions all have the same number of configurations
suggests there is svimmetry in this problem. The union of all configurations corresponding to
assuinptions ST are in figure <1.20 and those corresponding to assumptions S8 are in figure 4.21.
In those figures. the aligned and unaligned boundaries are treated as 1dentical and results in a
total of 61 possible stencil configurations. By rotating these stencil configurations by 90 degrees
clockwise. then the solution set to assumptions S5 and S6 in figure 4.13 is obtained. Another 90
degree rotation provides the 83 and S4 solutions; And one more 90 degree rotation provides the
S1 and S2 solutions. Note that the set of stencil configurations after each rotation has 7 stencil
configurations in common with its pre-rotated configurations. This suggests the symmetry 1s
not perfect, but that’s fine since the number of stencil configurations 1s now manageable at 61

cases. The union of stencil configuration sets for all eight assumptions (S1. 820 83, S4. S5, S6.
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Figure 4.13: No Wrap Assumption: & Cases

S7 and S8) has 216 configurations for the 3 x 3 problem when unaligned and aligned houndaries

are considered the same.

4.6 Unique Mappings

With the set of possible 3 x 3 stencil configurations now minimized, further detailed study of the
mapping problem is possible. The mapping problem is to find a set of directions (unit vectors)
for each stencil configuration that will intersect with the solid wall edges. The selection of the

direction vectors needs to satisfy the following mapping criteria:

1. Maximize the accuracy of the spatial interpolant of the stencil by finding the closest wall

boundary for each mapped grid point.

2. Expand outward from the center of the 3 x 3 stencil to maintain the same C'FL conditions

for numerical stability.

3. Insure that never more than 3 grid points are collinear after the mapping occurs to provide

a linearly consistent system for spatial interpolation.
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The assumption that a stencil will not be wrapped by the wall geometry was described in
the last section. A consequence of this assumption is that any legal 5 x 5 stencil with a fill point
in the center grid position number 13, will contain a 3 x 3 sub-stencil that contains no boundary
grid points. And, all of the 9 possible sub-stencils (3 x 3) will contain the center fill point of the
5 x 5 stencil. In figure 4.14 notice that the S8 case has no "B” points in the bottom-right corner
3 x 3 sub-stencil. Similarly, the ST case has no "B points in the bottom-center 3 x 3 stencil.

The importance of this is that all grid points can be expanded out to meet the second
mapping criteria. The CFL constraint would require a smaller time step if the stencil were
made smaller. And. the third criteria could not be assured if the unaligned boundary points
were mapped to an aligned position on the wall edge. This is readily seen in figure 4.15 in which
a simple line parallel to the x-axis is the only geometry. If the fill point is taken as the center
of any 3 x 3 stencil there will always he 6 collinearly mapped grid points (3 mapped fills and
3 mapped unaligned boundaries). Note that the unaligned boundary points in the figure 4.15
would be mapped to the same location as the fill points. However, if the fill points are considered
the center of the 5 x 5 steneil then assmmptions S2, S3, and S4 in figure 4.13 are true. In this
case, there will be at least one 3 x 3 stencil that contains no boundary points and the fills may
he safely mapped as shown i the figure 4.15. and the remaining 6 interior grid points do not
need to be mapped.

Only the stencil configurations resulting from assumptions S7 and S¥ need to be mapped
llowever. All other mappings are deduced by rotating the direction vectors about the center of
the 5 x 5 stencil up to a maximum of 3 times (90 degree rotation each) until the rotated S7 and
S8 assumptions align with the particular stencil configuration as discussed in section 4.5.

Each of the sub 3 x 3 stencils in figure 4.14 has one fill point, two interior grid points and six
grid points that are not a boundary type. The remaining 6 grid points may he either a fill point
or an interior point. Therefore, there are 2 = 64 stencil configurations that need a mapping
under the ST assumption and another 64 stencil configurations that need a mapping under the
S8 assumption. It 1s possible to simplify this mapping task further by noting the additional local
synetry found in the 3 x 3 sub-stencils. The S8 sub-stencil 1s symmetrical across the main
diagonal and the ST sub-stencil is symmetrical down the middle vertical as shown in figure 4.16.
Across this line of symmetry, the same set of mappings will occur. It is therefore necessary to

only derive a mapping for one-half of the 3 = 3 sub-stencil. Only 3 grid points are unknowu on
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o= Interior Grid Point Type

o= Fill Grid Point Type

7= Not a Boundary Grid Point Type
X= Unspecified Grid Point Type

B= Boundary Grid Point Type

BXXXX NXBXX
XBXXX XXBXX
XXoZ7Z NZo 7Z X
XXZe Z XZe® ZX
XX77e X7 7 X
58 S

Figure 4.14: 5 x 5 stencil configurations under S8 and S7 assumptions
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Figure 4.15: Too Many Collinear Girid Points When Unaligned Boundary Points Need Mapped
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o= Interior Grid Point Type

o= Fill Grid Point Type

Z= Not a Boundary Grid Point Type
X= Unspecified Gnd Point Type

B= Boundary Grid Point Type

BXXXX XXBXX
X B XXX X XBXX
XX™ Z7Z XZ o ZX
XX;\\i’ XZ¢ ZX
X XZ.Z XZ e 7 X
S8 ST

Figure 4.16: Sub 3 x 3 stencil symmetry under S8 and S7 assumptions

one side of the line of symmetry and therefore at most 2% = 8 configurations need to be mapped
per the ST or S8 assumption. The mapping on other side of the sub-stencil is found by rotating

the direction vectors around the line of svmmetry.

4.6.1 Mapping the S8 Cases

A mapping will be developed for the upper triangle of the sub 3 x 3 S& stencil in figure 4.16
that may be used for the lower triangle as well. Grid position 13 of the 5 x 5 S8 stencil will
always be assigned unit direction vector (\_/—,_1,. \/L?) The fixed interior grid point locations 5
and 9 never need to be mapped to the boundary since they already contain the actual data to
be used in forming the spatial interpolant. This leaves grid positions 10.14. and 15 (refer to
as plOpld.and plb, respectively) to be mapped. When pl4 and plh are not both a fill, the
mapping only depends on pl0. pl4 and plh which can be of either interior or fill type (in this
case the mapping does not depend upon other grid points since the natural constraints dictate
what they already must be). In addition. it is not possible for p10 to be type fill and pl5 to
be type mterior sinultaneously due to natural constraints. And, when pl0, pl4, and plb are
all intertor grid poiunts, no mapping is needed. For the cases when pld and plH are both fills,
1t 15 necessary to use the information from pl8, pl9, and p20 to determine the mapping. See
figure -1.17 for all the mappings of the upper triangle of the 3 x 3 S8 sub-stencil in figure 4.14. The
notation used in figure 4.17 is the same as in figure 4.14. The arrows indicate which direction

the fill point is to be mapped. Notice that the first two rows in figure 4.17 depend upon the
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Figure 4.17: S8 Symmetrical Mapping: 18 Cases

type of grid point at pl0. pl4, 15, pI&. p1Y, and p20. The hottom row only depends upon pl0.
pld, and p15. Those cases marked degenerate in figure 4.17 require human assistance since they
may not work on all geometries. For example, the degenerate case in the top row of figure 4.17
may have a problem with its middle fill point. The other two fill points will definitely map to
a nearby wall boundary. but the middle point could conceivably not intersect a wall boundary.
Clearly. this is not likely to happen since geometry tends to be continuous and well-structured.
It is most likely that t]Aw wall boundary grid point is at the p22 or p23 grid point. Rather than
increasing the complexity of the mapping scheme at this time for these very rare cases. it seems
acceptable to let the human provide occasional assistance. Note that there are 18 mappings for
the upper triangle of the 3 x 3 S8 case. If the local symmetry were not utilized it would be
necessary to determine the mappings for 187 = 324 separate stencil configurations. While not
intractable in two dimensions, this would become a niore serious issue in three-dimensions.
Flipping the 18 mappings in figure 1.17 across the diagonal symmetry line provides the

mappings for the other half of the 3 x 3 sub-stencil.
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4.6.2 Mapping the S7 Cases

A mapping is found for the left side of the sub 3 x 3 ST stencil in figure 4.16 using the same
procedures as for the S8 case just discussed. However, the line of svmmetry is now vertical
instead of diagonal. Grid position 13 of the 5 x 5 S7 stencil will always be assigned unit
direction vector (), 1) since by the ST assumption a boundary grid point is directly ahove it.
The fixed interior grid point locations p3 and p8 never need to be mapped since they are interior
grid points. This leaves grid point locations p2, p7, and pl2 to he mapped. See figure 4.15 for
all the mappings of these grid points under the S7 assumption. The ST assumption has over
twice as many cases as the S8 assumption (40 vs. 18 cases respectively). As in the S¥ cases,
using the local symmetry saves the effort of mapping the (40° = 1600) cases that would occur
if svmmetry were not used. Again, significant simplifications in the mapping problem occur in

three-dimensions when symmetry is applied.

4.6.3 Handling the Degenerate Cases

The degenerate cases that are outlined in figure 4.18 and figure 4.17 are designed to never map
more than 3 grid points collinearly onto a coordinate axis, but the solid wall may not be close
enough to the mapped fill points along the direction of the unit direction vector, or may not
exist at all. This could result in an interpolation function of lower accuracy than required or
simply not be correct. The direction of the arrows in degenerate cases are selected with an
educated guess but could be made better by including imnformation outside of the 5 x 5 stencil or
using information not directly adjacent to the S8 sub-stencil m figure 4.14, but inside the 5 x 5
stencil. The degenerate cases may be removed by increasing grid resolution to smooth out the
crevices aud bumps.

There are some situations in which the S7 or S8 no wrap assumption is not valid. Shown in
figure 4,19 15 a geometry in which neither the S7 nor S8 assumption is true for the case when
the Z's are fills and the center of the 5 x 5 stencil 1s at the larger circle. It is characterized by
little bumps no bigger than the grid spacing which ocecur in a corner area. Fortunately, C'AD
systems represent. their curves with smooth parametrie descriptions that will not typically have
tiny bumps. This would he one case in which human assistance is necessary, or a relaxation of

the ST and S8 assumptions 1s needed. Since these cases are so rare, human assistance seens
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Figure 4.18: S7 Symmetrical Mapping: 40 Cases
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more efficient. Or. these rare cases may also simply be included with the other mappings but
this was not necessary in this work. All of these special cases may be calculated using the Stencil
Constraint Tree algorithm and Recursive Boxes algorithm discussed previously.

If the degenerate cases are included in the acceptable mapping set but with a limit to
the arrow size imposed, then acceptably accurate interpolations could still be automatically
generated.  Simply restricting the maximum arrow mapping length to 2 or 3 grid spacings
will permit the degenerate cases to function correctly, albeit less accurately. In figure 4.22 is
the previously discussed difficult case of figure 4.19 in which the highlighted fill point has had
neighboring fill point changed to a boundary point. By permitting stretched arrows it is possible
to correctly map and create an interpolant for this slightly changed system, despite the many
bumps still along the edges. Some degenerate cases, even with the stretched arrows, may stll
not intersect a physical boundary. But. the fill points may still be mapped by using an alternate
set of non-degenerate cases. A good example of this is shown in figure 4.23. Notice the corner
problem when matching up with the ST case as shown, that the last degenerate ST mapping of
figure 1.18 applies to left side of the 3 x 3 sub-stencil. The arrow extends to infinity, but after it
exceeds 2 or 3 grid spacings this case would be rejected. However, notice that the same set of fill
points may be solved by using two non-degenerate cases as shown in figure 4.23. The first 3 x 3
stencil number 1 in figure 4.23 is an S8 case in which all the Z’s are interior points. This stencil
solves the corner fill point that was previously mapped to infinity. The second 3 x 3 87 stencil
number 2 easily maps the remaining fill points. In this manner, it is possible to avoid degenerate
mapping situations by replacing them with alternate non-degenerate stencil mappings.

Oue of the strengths of automation is that these many decisions can he performed system-
atically and quickly. In addition to avoiding degenerate cases. it is important to carefully select

the order in which the fill points are solved as discussed in section 5.2
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Figure 4.20: All Possible ST Stencil Configurations with Fill at Center : 16 Clases
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Chapter 5

Solving Near Boundary Grid

Points

The objective of the previous chapter was to develop a unique mapping of the fill points to the
solid wall boundaries. Each fill point on the Cartesian grid domain is contained within at least
one 3 x 3 stencil domain. From within a particular 3 x 3 stencil domain. never more than 3
mapped fill and/or interior grid points are collinearly located in a line that is parallel to the
coordinate axes. This chapter will take advantage of this property by creating a local spatial
interpolant. in each of the 3 x 3 stencil domains. The local gpatial interpolant is then used at
each time step to solve the fill grid points.

The domains of the local spatial interpolants that are defined on the 3 x 3 stencils for the
rotated box problem are represented as shaded regions in figure 5.1. The solid circle grid points.
open circle grid points and letter "B grid points represent interior grid points, fill grid points.
and houndary grid points, respectively. Each 3 x 3 stencil domain has a nuinber in the center
of it corresponding to the sequence in which its spatial interpolant 1s created and the sequence
in which its fill points are evaluated. The arrows indicate where the fill points are mapped onto
the wall boundaries. Some of the fill points are contained within two or more stencil domains.
For example, stencil domains | and 2 share one fill point. This fill paint may use either stencil
domain’s local spatial interpolant. The choice is not arbitrary however as the nunerical stability

can he affected as discussed later in section 5.2,
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There are multiple ways of arranging the 3 x 3 stencil domains 1o cover all the fill points.
In figure 5.3, a numerically stable scheme with twenty stencils are used for the 32 fill points
as compared to the eight stencils used in figure 5.1. And in figure 5.2, eight stencils are used
with the same fill point mapping and stencil domains as in figure 5.1, but. this time the stencil
domains are solved in a different sequence-resulting in an unstable scheme. In general, the
numerical stability of the MESA schemes with wall boundaries depends upon the location of

the stencil domains and the sequence of their evaluation as discussed in section 5.2.

5.1 Lagrangian Form VS. Multidimensional Taylor Series
Form

A local polynomial spatial interpolation function is found for each of the 3 x 3 stencil domains
(shaded regions in figure 5.1). The interpolator function is a polynomnial that is consistent with
the local boundary conditions at the mapped fill locations and it is simultaneously consistent
with the interior grid points contained within the stencil domain that it is defined.

The local spatial interpolants are piecewise continuous across the regions of stencil domain
overlap. The mathematical form of the local interpolating polynomial can reduce the compu-
tational effort of creating and evaluating it. For example. it is well known that using Horner's
form [15] reduces the number of multiplies required to evaluate a polynomial. Similarly. it is
possible to reduce the number of unknown parameters of the interpolating polynomial while
maintaining the same accuracy by choosing a polynomial form that best fits the application.
This section will demonstrate the benefits of using the Lagrangian forms of the spatial inter-

polants for computing fill grid point solutions.

5.1.1 Forming the Interpolant With Multidimensional Taylor Series

Eacl local polynomial spatial interpolation function can be formed in various ways once the
fill points are mapped to the wall boundaries. The fill points are mapped in the manuer of
chapter 4. along a unit direction vector to a location on the physical wall houndary. The
location is determined by finding the intersection of the line drawn in the direction of the unit

vector and the parametric curve representing the boundary. I the interpolation function is
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Rotation Angle = 0.392699
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Figure 5.1: Stable Sample Mapping: Box Rotated ¥ Case
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Rotation Angle = 0.392699
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Figure 5.2: Unstable Sample Mapping: Box Rotated % Case
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Rotation Angle = 0.392699
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Figure 5.3: Stable Sample Mapping: Box Rotated % Case
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expressed in multidimensional Taylor series or Lagrangian form, it is then necessary to solve for
the unknown parameters by forming a consistent set of linear equations. Each equation of the
system is the spatial interpolant function evaluated at a known interior grid point which is set
equal to the data at the interior grid point. Or, the spatial interpolant function is evaluated
as part of a boundary condition at a wall boundary and set equal to zero. An example of this
procedure is shown next.

Consider the ¢300 MESA scheme in which stencil number 1 (shaded hox 1) of figure 5.1
needs an interpolation function to evaluate the 4 fill points within its domain at each time step.

The assumned boundary conditions are:

dp
@& _y (5.1)
¢
1, =0 (5.2)
oV,
— =0 (5.3)
Ny

where 17 = (u, v} is the velocity vector with velocity components « and ¢ in the Cartesian x

and y-axis directions . p is the scalar pressure, 5 is the normal to the wall surface directions, 7
is the tangent to the wall boundary direction, V5 is the velocity tangential to the wall, and 15,
is the velocity normal to the wall.

If the three 2nd order local interpolation polynomials are in multidimensional Taylor series

form:

P =3 S epyay (5.4)

i=0 j=0

u(.y) :ZZ(’!I,"J'I[.}/} (5.05)
=t j=0

v(r.y) = sz-,,j.r'gﬂ (5.6)
(=0 j=0

Then each function has 9 unknown coeflicients that need solutions. Solving the coefficients
(epi ;) 1s achieved by inverting a 99 matrix formed from the 4 boundary condit ion equations n.1
evaluated at each mapped boundary point and the 3 interior equations 5.4 are evaluated at each

interior poimt. The boundary conditions force the simultaneous solution of cu; ; and vy ; since
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they operate on the velocity vector, and are inherently multidimensionally coupled; this requires
the inversion of an 18x 18 matrix. This matrix is formed from the 8 boundary condition equations
(4 of equation 5.2 and 4 of equation 5.3) evaluated at the sanme mapped boundary locations as the
pressure and the 10 interior equations evaluated at the interior grid point locations (5 equations
for u(z.y) and 5 equations for v(x,y) ).

Once the coefficients cp; ;. cu; ;. and cv; ; are solved. then the spatial interpolants p(x.y),
u(x,y). and v(z,y) are defined for all locations within the stencil domain (ie. box number 1 in
figure 5.1). The 4 fill points are expressed as a linear combination of the 3 interior grid points
by evaluating the spatial interpolants at each fill point location. The fill grid point shared by
stencils 1 and 2 of figure 5.1 has the following stable pressure solution with local origin at the

“center of box 1 and h is the distance between grid points:

p(0 h) = 0.854193 p(h. 1) +1.6013 p(0.0)=1.33704 p(h. 0)—0.667329 p(U, —I+05488T2p(h, =)
(5.7)
And the same fill point has the following pressure solution with local origin at the center of

hox 1 when the stencil sequence is changed as in figure 5.2:
p(=h.0) = 0.95015 p(0, 0) + 0.23779 p(=h. —h) + 0.198062 p(0. —h) = 0.386002 pth. —h) (5.8)

The latter solution uses fewer interior grid points (4) than the former (5) and results 1 a
numerically unstable solution.

Once the 4 fill points are evaluated in box 1 of figure 5.1, only three of the five interior grid
points liave enough information in their 3 x 3 stencils to be time advanced. Two interior grid
points require data from fill points in box number 2 and box number & of figure 5.1. In practice.
all fill points are evaluated first (before the interior points), so that the interior grid points may

be time advanced simultaneously for improved computational performance.

5.1.2 Forming the Interpolant with Lagrangian Polynomials

Regardless of which stencil domain box is heing used. there will always be 9 unknown coefficients
(efi Vi j € (0.1.2)) per primitive variable function f(r.y) when the multidimensional Taylor

series form of the interpolants is used with the ¢3o0 MESA scheme in two-dimensions.  The

NASA/TM—1999-209132



126

Lagrangian form avoids this by taking advantage of the regular Cartesian grid structure used in
this work.

If we assume the three local spatial interpolants p(x, y).u(x, y), and v(x,y) are Lagrangian
polynomials, then the unknown coeflicients are simply the fill point values themselves. This
results in no more than 7 unknown coefficients for each interpolation function since each stencil
domain box will contain at least two interior grid points due to the ST and S8 assumptions
described in section 4.5.

For example, using the notation of figure 4.2, suppose we would like to time advance {7

m.,o

to I'\! where {7 = p.u, or v. This corresponds to time advancing the center of box number 5

i figure 5.4

Lo [ n

Using the ¢300 MESA scheme requires using the six interior grid points {7/ A

m Pl

o Uy U and dhe fill grid points EDAP E o which are mapped to the locations 7],
Lp o lan g 1 Pl b.p

0,00 o.m

Uy, Uy, respectively. The Lagrangian form of the spatial interpolants are:

fmiey = TEI) (5.9)
Jolr) = -2 +J;I)._,(h *+ &) (5.10)
ey = S0t (5.11)
gty = LELED (5.12)
goly) = - +";])._,(h +¥) (5.13)
qply) W (5.14)
plr.y) = (p, mf’” (r)+ Pm.m folx) + Pom fP(2 r)gm(y) +
(Profm(2) + pm o folx) + poo fr(e))goly) +
(Prp f(&) + po p fol@) + pop fo(e))gply) (5.15)
wle y) = (upp fm(a) + g, fole) + u, o, fp(a))gm(y) +
(i fma) 4 o fola) + wo o f1l2))goly) +
(wpp fon() + wy p fola) + u,, fp(a))aply) (H.16)
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Rotation Angle = 0
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Figure 5.4: Stable Sample Mapping: Box Unrotated Case
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l‘(l“ l/) = (l'{‘,”flﬂ(-l') + l'm,mfo('r) + tom fp(r))gm(y) +
(vrofm(e) + vy o fole) + vy o fr{aeNgoly) +

(u,‘,,fm(.r) + l‘m,pf‘)('l') + l‘o,pr(-l')){lI"(y) (5.17)

The coefficients p, ; are simply the pressure values at the corresponding grid points (a,b) :
a.b € (m,o.p)in figure 4.2. In this case. six coefficients are known. corresponding to the six
known interior grid points. The Lagrangian formula requires solving only 3 unknown coefficients
of p(a.y). (Poyp. Poos Pom ), compared to the § unknown coefficients (cpgo, epio. epuo, ¢po.
CPLLL CPa . CPog. CPya (P cpaa) Tequired when using the multidimensional Taylor series
form. Similarly. w(2. y) and v(r. y) have 3 unknown coeflicients each. Solving the 3 unknowns in
p{r.y) requires only 3 equations or the inversion of a 3 x 3 matrix. The boundary condition 5.1
15 applied at locations (b,p),(b,0),and (b.m) resulting in three equations which form a consistent
linear system. In stencil domain 5 of figure 5.4, the boundary is exactly aligned with the grid so
a = 1 1in figure 4.2 and boundary locations (b.p).(b,0).and (b,m) are equivalent to grid locations
(p.p).(p.0), and (p.m) respectively. The unknown coefficients, (p, . Po o. Pon ). will be expressed
as a function of the six interior grid points contained within the stencil number 5 of figure 5.4.
With its unknown coefficients solved, the primitive pressure function p(r.y) in equation 5.15 is
now known for all time as a function of interior grid values and is evaluated at each time step
after the interior grid points are evolved in time.

Stlarly. the coefficients of u(a. y) and v(x,y) are determined using the boundary condi-
tions 5.2, 5.3 evaluated at the mapped wall locations. The coeflicients w,; and v, represent
the grid values for u(w.y) and v(w. y) in the same way as the pressure coefficients pg ,. The
boundary conditions foree the sunultaneous solution of w, , and v, , since they operate on the
velocity vector in an inherently multidimensional manner. There will be 6 equations required to
solve the six fill points (w,,. g, Uosn, Vop. Voo, Uon) compared to the 18 equations required
when using the multidimensional Taylor series forms. Assuming the typically cubic cost, O(.V3),

to matrix inversion, the Lagrangian form’s advantage grows with three-dimensional problems.
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5.1.3 Forming the Interpolant with Hermitian Polynomials

The coefficients of the spatial interpolants used with the Hermitian MESA schemes may be
solved using a Hermitian form of the interpolant to significantly reduce computational costs.
The savings comes from minimizing the number of unknowns in the spatial interpolant by
forming the spatial interpolant in a Hermitian form as shown in equation 5.23. Since only
the aligned boundary case discussed in section 7.1.4 has been successfully solved. only a brief
presentation of the techniques employed will be discussed here. The odd dimensioned stencils
with Hermitian data are numerically unstable and so we will discuss the 2 x 2 stencil instead.
In the Hermitian form of the spatial interpolant. each unknown coefficient is defined by the
data elements in the stencil. Since the interior grid points within a stencil are known, only
the data elements at the fill points require a solution. Setting up the Hermitian form of the
polynomial is accomplished using an extension of Newton’s Interpolatory method [89]. The
algorithm is based upon divided differences and the observation that each divided difference
term is an approximation of the derivative of the function being mterpolated. This procedure

5. In this work. the

was developed and widely used hefore the advent of digital computers 1
procedure is executed in a completely symbolic manner so that the actual equation for the spatial
interpolant is derived for a general set of data. Since the fill points are not known, it would
not be possible to use this extension of Newton's Interpolatory method without the symbolic
extension. In addition. the interior grid points vary in value at each time step and it would be
necessary to run the algorithm at each time step if the symbolic form of the equation were not

used instead as in equation 5.23.

Using the extension of Newton's Interpolatory method and executing it symbolically. a one-
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dimensional Hermitian interpolant is found for the 5'* order ¢202 MESA scheme:

(r— .1'1)3 (607 + 10007 =520214+ 2124+ 32 (=5 z0 + »1)) fdate(0. r0)
flx) = (1_0__1)1)5 -

(r — 20)° (607 + 207 + 32 (20 =5rl) = 52001+ 10,1%) fdata(0.r1) +

(20— 1)’
(=2 4+ 20) (.1'—;'1)3 (32 =420+ x1) fdata(l,20) - 1
1 - (5.18)
(x0 — 21)
(r — .1‘0)3 Br+20-4xl) (r~— 2l) fdata(l,21)
3 +
(0 —21)

(o — .I'U]2 (r—al )3 fdata(2, x0)
2(x0 = 21)° *

(r — J'())3 (r — .rl)") fdata(2.»1)
2(—20 4 21)°

The two grid pomts in a row are labeled x0 and x1 in these equations and the data elements

are labeled:

I )

(‘)'l. dr

fdata{dr. . ») = (H.19)

Each coefficient of fdata(dx.x;) in equation 5.18 may be labeled [ .X; Dy, and therefore the

one-dimensional interpolant 5.18 may be written as:

fley= HXyDy fdata(0.20)+ HXyDy fdata{1l. 20) 4+ HXyDy fdata(2. r0)+  (5.20)

HX\Dy fdata{O.xel)+ HN\ Dy fdata(l.01)+ HX Dy fdata(2.a1)

Extending this to two-dimensions is a simple matter of creating the y-interpolant. f(y). by

substituting y for x in equation 5.18 to get:

flyy = HY Dy fdata{O,y0) + HYW Dy fdata(l, y0) + HY D fdata(2, y0) + (5.21)
Y1 Dy fdata(O. yly+ HY,\ Dy fdata(l. yl) + HY | Dy fdata(2.y1)
with

oY f(y)

"data(dy. y) =
S (dy.y) Ty

NASA/TM—1999-209182



131

The tensor product of these one-dimensional interpolants forms the following two-dimensional

spatial interpolant in Hermitian form:

flr,y) =

(HXoDy fdata(0,0,20.y0)+ HXoDy fdata(l,0,20.y0) + HXyDy fdata(2,0.20,y0))YHYo Dy +

(HX1 Do fdata(0,0,21,y0)+ HX 1D fdata(1,0,x1.40)+ HX D fdata(2,0,r1,y0))HY, Dy +

(HXyDy fdata(0,0,20.y1)+ HXoDy fdata(1,0.20.y1) + HXoD- fdata(2.0,20,y1))HY, Dy +

(HX\Dy fdata(0,0,21.y1)+ HX Dy fdate(1.0,21,y1) + HX | D» fdata(2,0. 01, y1)YHY Dy +

(HXoDy fdata(0. 1. 20, y0) + HNoDy fdata(1, 1,20, 40) + HXyDy fdata(2. 1,00, y0))HY, Dy +

(HX\ Dy fdata(0.1,21.y0) + HX 1Dy fdata{l. 1. r1.y0} + HX\ Dy fdata(2,1. 21, yOH YDy +

(HXoDy fdata(0, 1,00, y1)+ HXo Dy fdata(l,1,20,y1) + HNoDy fdata(2, 1,00, y)) YD) +

(HX Dy fdata(0. 2,21, y1)+ HX| Dy fdata(1. 1. 01, yl)+ HN D2 fdata(2. 1. el ylNHY Dy +

(HXoDy fdata(0,2,20,y0)+ HXoDy fdate(l.2, 20, y0) + HXDy fdata(2,2.00,y0))YHY Dy +

(HX, Dy fdata(0.2.21.y0) + HX1 Dy fdata(1,2.21.y0)+ HX D2 fdata(2.2. 21y HY Do +

(HXoDy fdata(0.2,00.y1)+ HXoDy fdata(1.2.00.y1) + HXyDy fdata(2,2. 00, y1)HY Dy +

(HX 1Dy fdata(0.2.01. yl)+ HX\ D) fdata(1.2. 01 yl)+ HX D fdata(2.2. 21 y1)YHY Dy

with

QY fay)

Jrdy yy (5-24)

fdata(dr, dy, . y) =

Notice that the spatial interpolant is now written in a form in which the unknowns are
simply the data elements. If grid point (x0.y0) is the only fill point in a 2 x 2 stencil, then all
data elements in equation 5.23 matching fdata(dx.dy.x0,y0) require a solution. The remaiing
elements, though left in algebraic form. are actually known at each time step and do no require
a solution. The other data elements are calculated using the Tensor product form discussed in
chapter 3.

Additional houndary conditions need to he developed for the Hermitian methods since they
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have more information at each grid point. The boundary conditions are developed directly from
the hinearized Euler equations in which the convection velocity is zero.

The assumed boundary conditions for the rotated box problem of section 7.1.4 are:

()‘_’11+1+l])

()71'_’n+lrt
0'_’n+t‘j
T”Tfn = 0, VTI.[INJE(U.I,Q‘...) (

(f)’_’n+1+t‘

Nal
(3
St

—

where V7 = (u.v) 1s the velocity vector with velocity components « and ¢ in the (‘artesian
x and y-axis directions, p is the scalar pressure, y is the normal to the wall surface direction, 7
is the tangent to the wall surface direction, 17 is the velocity tangential to the wall, and V;, is
the veloecity normal to the wall. The maximum values of n and t depend upon the order of the
MESA scheme. O > (2n+ 14 1¢).

Construction of these houndary conditions is simplified using the following relationship [28]:

"t e y)

G = ) Sy (5.26)

For example. define the unit normal vector, 5 = (normae. normy). then:

P flry)

- nornr normy FOD Gy +
anlr!
(normx — normy) (normr + normy)  fU (e, y) — (5.27)
norme noriny F200 g

The spatial interpolant function f(x,y) is defined in equation 5.23 and may represent the
pressure (p(x, y)). or the velocity (V{(x.y) = (u, ) in two-dimensions. Using the coefficients of
the function f(x.y) in equation 5.27 and the fact that data elemient f144 1y, y;) will always have
the multipher (M N Dy )(HY;Dgy) in equation 5.23. the boundary conditions can he quickly

constructed symbolically.

NASA/TM—1999-209182



133

In particular, it is possible to represent the linear system as:
Mf=Nd (5.28)

where M is the matrix of functions of normx, normy, # X;Dg,. and HY; Dy [ 18 the vector
of fill grid point data elements in the stencil: A" is the matrix of functions of normx, normy,
HX; Dy, and HY;Dgy: dis the vector of interior grid point data elements.

The solution to the fill points is then:
f=M7'Ad (5.29)

Finding the inverse of .M is difficult with higher order MESA schemes due to poor condition-
ing of the matrix. It was possible to invert matrix .M with schemes up to 11" order accuracy.
Higher accuracy has not yet heen achieved though other approaches remain to he tried. First,
the difficulty of a hadly conditioned system may he avoided by solving the system 5.28 symboli-
cally. Using current computer algebra packages it is not possible to quickly solve this system in
a direct manner. However. an approach using interpolation is discnssed in [72] that can produce
the inverse of the matrix symbolically while avoiding the combinatorial explosion which occurs
when using LU and Gaussian elimination symbolically. Second. the system may be solved using
Modular Arithmetic in which only integers are manipulated [125]. Finally, the conditioning of
the system changes by varying the set of boundary conditions used, changing the grid spacing,
or multiplying the matrix system with pre-conditioners.

If the system 5.28 could be solved symbolically into form 5.29 then not only would the
conditioning issue be avoided. but the solid wall geometry could be permitted to move (as in
turbomachinery). Also. all possible stencil configurations could be pre-computed reducing the
time required to develop spatial interpolants for each fill point. This will be pursued in later

work.

5.1.4 Insuring Consistent Linear Systems

The mapping of the fill points to the wall boundary must never place 4 or more fill and/or

interior grid points that are within the same steucil domain (shaded boxes) in a line that’s
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parallel to the coordinate axes. To do so would create an inconsistent linear system preventing
the calculation of a local spatial interpolant for the stencil with this mapping. Fortunately. the
mapping developed in chapter 4 insures that every possible 3 x 3 stencil will have a unique
mapping that provides a consistent linear system (though the degenerate cases may require
human assistance). A corollary to the Fundamental Theorem of Algebra [94] is that there is a
unique polynomial curve of some degree that passes through a particular set of points. Therefore,
the Lagrangian and Multidimensional Taylor series forms are equivalent and will produce the
same results. It is possible then to study the properties of any polynomial of same degree that
passes through the stencil points to understand the properties of the Lagrangian form. If more
than 3 fill and/or interior grid points are on a line parallel to the coordinate axes, the only way
to interpolate along this line is to use at least a third order interpolating polynomial in one
dimension. For example, to create a spatial interpolant for the pressure in multidimensional
Taylor series form that could interpolate across a stencil with four points along the y-axis. the

following minimal degree polynomial is required:

p0.y) = epoo + cpory + cposy + cpoay’ (5.30)

But the ¢300 MESA scheme is only second order accurate and does not use the cpy3 term
which can be considered a third order partial derivative term in the y direction [39]. Instead,
it uses the terms of the pyramid mneumonic of chapter 3. (Cpoo. CP1o. CP2o. €O CPL1. Do,
cpoz. cprz. cpe 2} It is desirable o use the same spatial interpolant forms when interpolating
the fill points as the MESA schemes do in their spatial interpolation step to insure uniform
treatment of the entire grid for stability, accuracy, and isotropy. One of the themes of the
MESA approach is to treat all aspects of the problem in the same manner and to as closely as
possible emulate the information flow of the actual physics. All acoustical physics interactions
are nearest neighbor and the domain of dependence of the hyperholic linearized Euler equations
fits within a 3 x 3 stencil.

By using the Hermitian MESA schemes (¢20D, cdoD, c6oD). ...} it is possible to increase the
accuracy and resolution of the numerical scheme without increasing the stencil size. Not only
do small stencils simplify the mapping probleni. but they more faithfully reflect the information

flow of the physies itself. Typical CAA schemes use larger stencils to gain spatial accuracy
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but most of the grid points used in these large stencils are not in the domain of dependence
and therefore do not truly reflect the information flow of the actual physics. At the very least
carrying the extra stencil information of a very large stencil can lead to significant inefficiencies

and possibly introduces instabilities.

5.2 Systematic Stencil Selection

For typical applications many fill points will need to he mapped to the complex geometry
solid wall boundaries. The mapping and stability of the scheme depends upon the sequence
and location of the stencil domains shown by figures 5.1 and 5.2. A particular fill point may
be solved using one of several possible interpolation functions depending upon which of the
overlapping 3 x 3 stencils is used. unless of course only one stencil domain contains the fill
point. A systematic way of selecting the location and sequence of the steucil domains has been
developed in this work that provides accurate and stable solutions for the ¢300 MESA schieme.

The Hermitian MESA schemes, however, need additional work to be stable in all cases.

5.2.1 Maximize Interior Information

A method for choosing the location and sequence of the stencil domains based upon maximizing
the use of interior information was found that produces stable solutions to the ¢300 MESA
scheme in all cases attempted. The method selects those 3 x 3 stencils that contain the most
interior grid points. As was shown in equations 5.7 and 5.8. the number of interior grid points
used to calculate a given fill point can vary. In figure 5.1 box number | has four fill and five
interior grid points; whereas box number 2 has five fill and four interior grid points. The spatial
interpolant in box number 1 should be solved before box number 2 to maximize the nmnber of
interior points influencing its fill points. But it is possible to do better than that as shown n

5.3. In this case. box number 1 has two fill points and seven interior points. Notice no

figure
fewer than two fill points can exist in a 3 x 3 stencil for this problem. A 3 x 3 stencil will always
contain at least one fill point. Also, while box 1 in figure 5.3 has two fills. so do boxes 2. 3. 4.
5.6. 7. and & Any of those boxes could have heen solved first. However. all stencil domains
containing 2 fill points should be solved hefore those contain 3 fills. Therefore, boxes 9. 10, 11.

and 12 are solved next. This is followed by boxes with 4 fill points (hoxes 13. L4 15, and 16)
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And finally, boxes 17, 18, 19, and 20 contain five fill points and are solved last.

This method of stencil selection also encourages multiple overlap of the stencils which was
found to be necessary for numerically stable systems as well. However, overlapped stencils that
minimize interior information are generally unstable as in figure 5.5.

An example of the lack of overlap using minimal interior ordering with small 2 x 2 stencils is
shown in figure 5.6 and the same case but using maximal interior ordering is shown in figure 5.7.

The fill points shared by stencils in the overlapped region provide the coupling necessary to
form local spatial interpolants that are piecewise continuous across the computational domain.
But. this coupling can result in excessive error growth. Therefore, another advantage of ordering
stencil domains by fill point count is the natural separation of the stencils which serves to quell
the growth of certain propagation modes. This is seen in figure 5.4 in which boxes 1.2.3 are
connected, but then box 4 is not connected to box 3.

[t was also possible to create a stable MESA schenie with solid wall houndaries by alternately
using two unstable schemes at every other time step. This essentially requires using two different
sets of stencil selection algorithins but an automated method for doing this was not obvious nor
apparently needed. But this does demonstrate some of the complex behavior that is occurring.
Proving stability for all cases is not currently possible for complex geometries due to limits in
the mathematical theory [45]. It is possible to prove stability for a specific case by examining
the eigenvalues of the evolution matrix, but it is usually quicker and less expensive to simply
test the algorithm on a real case. Since the stability of the general multidimensional case cannot
be proven at this time, these numerical experiments offer gnidance should future instabilities

arise,

5.3 Isolated VS. Implicit VS. Recycled Fill Point Solution

Onee the mapping of the fills and the selection of the shaded stencil domains is completed, the fill
equations can be determined in several ways: isolated, implicit, or recycled. The wrong selection
of stencil domains results in an unstable numerical scheme as mentioned. Slightly perturbing
the mapping (adjusting the arrows) of the fills did not noticeably alter the accuracy or stability.
The fill equations not only depend upon the mapping and location of the stencil domains. but

also upon how the overlapped regions are dealt with. The lsolated method ignores the overlap.
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Rotation Angle = 0.392699
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Figure 5.5: Sample Mapping Ordered by Minimal Interior Dependency: Box Rotated I Case
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Rotation Angle = 0.392699
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Figure 5.6: Sample Mapping Ordered by Minimal Interior Dependency - Small 2 x 2 Stencil:
Box Rotated T (lase
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Rotation Angle = 0.392699

Figure 5.7: Sample Mapping Ordered by Maximal Interior Dependency -

Box Rotated £ Case
3
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and the Ihmplicit and Recycled methods couple the overlapped stencils.

5.3.1 Isolated Method

The Isolated method is unstable but its basic principles help in the understanding of the other
two methods. which are stable. The Isolated method treats each shaded region, as in figure 5.1,
as an independent system. The box number | is solved first, creating solutions for the 4 fill points,
including the one shared with box number 2 using the local spatial interpolant developed for
box number 1. Then box number 2 is solved, creating solutions for its 5 fill points, except it
does not assign an equation to the shared fill point since that point has been assigned already
using the local spatial interpolant in box 1. This process is repeated for all shaded boxes.
Siice the hoxes are solved independently, there is an inherent instability created at shared fill
points since each stencil would in general have a different solution for its shared fill points. The
arrow mapping could result In more than one arrow direction at a fill point creating another
possible instability. This instability is again caused by the fact that, in general, each local spatial
iterpolant will generate differing solutions at a particular point that is shared by another local
spatial interpolant-unless of course the shared point is an interior point since bhoth spatial

interpolants are by definition equal to the shared interior point.

5.3.2 Implicit Method

The Implicit method attempts to remove these instabilities by forming a piecewise continuous
spatial approximation of the entire grid domain. This is achieved by simultaneously solving all
the unknown spatial interpolant coefficients in every stencil domain that contains a fill point.
Using the Lagrangian interpolation form results in one equation for each fill point, except when a
fill point is shared between two or more stencil domains. Shared fill points can use one equation
from any of the stencils 1t 15 contained within.

The Implicit method. in general, results in a large matrix to invert. For example, the rotated
hox in figure 5.1 has 32 fill points creating 32 equations which require solving 32 coefficients
simultaneonsly. The advantage here is that the shared fill points are now truly shared since
they will have the same values using any of the local spatial interpolants from stencils in which

they are contained. This approach creates stable nunierical methods, hut is very expensive. Not
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only is the matrix inversion process (which has cubic complexity) expensive, but the fill point
solutions become a linear combination of many interior grid points. In figure 5.3, the continuous
overlap of stencils implies that the last stencil number 20 depends upon information from the
first stencil number 1. The fill point solutions in stencil number 20 could be a linear combination
of the entire set of interior grid points in the computational domain. except the origin since it

is not shaded! For real applications these costs would make this approach intractable.

5.3.3 Recycled Method

Fortunately, the Recycled method produces results identical to the Implicit method, but at a far
reduced cost. The essential idea is to treat fill points that have heen assigned by a previous stencil
as an interior point in the next stencil domain that contains it. This way the overlapped stencils
are still consistent with each other at all grid points in common. Rather than simultaneously
solving the entire system as in the Implicit method. the smaller subsystems (each stencil) is
solved in sequence. For the case in figure 5.3 the cost is 200(3%) = O(H40) compared to the
Implicit method cost of 0(32%) = 0O(32768) for creating the equations for all the fills. And,
the cost of evaluating the fill points is significantly lower as well. This savings occurs because
treating the previously assigned shared fill points as an interior grid point in the subsequent
stencil domains results in never having more than 8 grid points in a fill equation. Those pseudo
interior grid points are actually fill points that must be evaluated in a previous step. Since some
of the points in a stencil domain depend upon stencil data outside of the current stencil. the
order in which the fill points are evaluated hecomes important. This ordering couples the entire
problem making it difficult to parallelize computations, though there are generally far fewer fill
points than interior points in a typical engineering application. One advantage of the Implicit
method is it expresses each fill point as a linear combination of interior grid points only and

therefore, the sequence in which the fill equations are evaluated becomes irrelevant.
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X= Unspecified Point
o = Fill Pivot Point
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Figure 5.8: 5 x 5 stencil with fill point in center

5.4 Step-by-Step Demonstration of Mapping and Solving

the Fill Points

[t is important to systematize the process of mapping and solving the fill points so that arbitrarily
complex geometries may readily be dealt with. An overview of one such process used in this
work is presented next as a series of ten steps. These steps pertain to using 3 x 3 stencils as these
were the most successful methods found in this work. but the same concepts may be applied to

any size stencil.

Step 1 Gather Needed Fills

Make a list (referred to as a "todo™ queue) of all the fill points in the grid. Remove from
consideration those fill points that do not have an adjacent interior grid point since they. are
not part of the 3 x 3 stencil of an interior grid point and hence, are not needed. As an example,
the fill points found in each corner (one in each corner) of figure 5.1 are not needed since the

interior grid points will never require information from those grid points.

Step 2 Test Stencil Configurations

Consider each 5 x 5 stencil in the entire computational domain that contains a fill point at its
center (pivot point) as in figure 5.8,

Test the mner 3 x 3 stencil for correctness (U tests per stencil) by using the stenctl constraint
tree with V= 3 as discussed in section 4.3, In two-dimensions, 216 possible cases under the
no wrap assumptions (S1, 82, 53, S4, 85, S6, ST, and S8) are built into the tree as discussed in

section 4.5 and require only 9 tests per stencil. I the inner stencil of figure 5.8 does not pass
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this test. it is hecause the grid density needs to be increased, the CAD geometry file has an
error, or a degenerate case has occurred that requires human assistance. Put these fill points at
the end of the "todo” queue and deal with them later. These difficult fill points may actually
be indirectly solved when a neighboring fill point that does not have these difficulties becomes

the pivot point since all fill points around a pivot fill point are solved simultaneously.

Step 3 — Order the Fill Points

Order the fill points in the "todo” queue by the number of fill points contained in their 3 x 3
stencil from fewest to most. This has the effect of always using the most interior grid point
information for each fill point and is used in the sequence shown in figure 5.3. If the order
is reversed. the entire scheme is unstable despite providing piecewise continuous interpolation
between stencil domains. The reversed order is equivalent to minimizing the number of interior
grid points used for cach fill point as shown in figure 5.2. Random sequences of stencil domains
produce random results (some of which are stable despite not using the maximal number of

Interior points).

Step 4 - Rotate to Match S7/S8 Case

Those inner stencils that pass the test in step 2 will be of stencil type S1. 52, 53, S4. 55, 56.
S7. or S8 as shown in figure 4.13. If it is not of type ST or S8 then rotate it once about the fill
pivot in figure 5.8 90 degrees and then retest it. Repeat this possibly two more timmes until the

rotated stencil is of type S7 or S8 as shown in figure 4.14.

Step 5 - Map the Fill Points

Apply the correct mapping to the fill point(s) contained in the 3 x 3 ST or S& sub-stencil. The
ST sub-stencil has the fill pivot point in its top center position: While the S8 sub-stencil has the
fill pivot point in its top left position. Use the mappings in figure 4.17 if the sub-stencil is type
S&. or use the ST mappings in figure 4.18 if its not. If the inner 3 x 3 stencil is of hoth S& and

ST type. go with the S8 mapping since it is simpler to evaluate.
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Step 6 — Unrotate the Stencil and Mapping

Unrotate the 3 x 3 inner stencil (if necessary) back to its original state, while at the same time

rotating the arrows in the same direction about the fill pivot point by the same amount.

Step 7 - Determine Mapped Fill Point Locations on Wall Boundary

Starting at the fill points in the unrotated 3 x 3 S7 or S8 sub-stencil, extend a line in the direction
of the assigned direction vector until it intersects the physical boundary. Repeat this for the
other fill points (up to 7) in the sub-stencil. All the fill points within the sub-stencil are now

uniquely mapped to a point on the physical boundary.

Step 8 — Compute the Local Spatial Interpolant

=

Generate the local spatial interpolant for the sub-stencil in the manner discussed in sections 5.1.2

and 5.3, The local origin of the spatial interpolant will be the center of the 3 x 3 sub-stencil.

r

not the center (pivot point) of the inner stencil in figure 5.8. After this step, a local spatial

interpolant is defined on the stencil’s domain.

Step 9 - Assign Solutions to the Fill Points

Evaluate the local spatial interpolant at each fill point in the stencil. assigning its value to each
fill point in the sub-stencil. Some of the fills that are not the fill pivot points are solved since the
spatial interpolant may be evaluated at all grid points within the 3 x 3 sub-stencil. For example,
consider the rotated box shown in figure 4.3. The topmost fill in the top corner of the hox is
not needed and is rejected m Step 1. The fill point directly beneath it is needed but it cannot
be chosen as a fill pivot point since neither the ST nor S8 assumption is satisfied when it is the
center of a 5 x 5 stencil. It is placed at the end of the "todo™ queue by Step 2. It is solved in

this Step when either the fill 1o its left or to its right is a fill pivot point.

Step 10 - Remove Completed Fills From Queune

Remove those fill pomts from the “todo™ queue that were assigued in Step 9. Pop the next fill
point off the “todo™ queue and proecess the next 5 x 5 stencil starting at Step 1. If the “todo”

quente is empty then stop.
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After completing all these steps, If the "todo” queue is not empty notify the human assistant.

5.5 Generating the FORTRAN Wall Boundary Input File

After developing the solutions for all the fill points in Mathematica, these solutions need to be
conveyed to the FORTRAN code that is actually going to perform the calculations necessary
for evolving the linearized Euler equations in time.

To accomplish this, Mathematica generates a file for the FORTRAN code to read that
encodes the solutions for all the fill points. Since each fill point solution is essentially a linear
combination of the interior grid point data, the file includes the coefficients and locations of all
interior grid point data elements necessary for each fill point. In addition, this information Is
sequenced in the same order required from the Recycled method discussed in section 5.3, This
file is simply stored as a one-dimensional array in FORTRAN and contains all the information
necessary to correctly evaluate all the fill points in the computational domain at each time step.

The data file contains integer data types describing interior grid point locations and real data
types representing the coefficients of each interior grid point. From FORTRAN's perspective all
the data types are real, but the FORTRAN code converts the reals to integers when appropriate.
Each fill point has a packet of information. The first two integers specify where the fill point is
located. The next three integers specify the number of p. u. and v terms that form the lincar
combination solution for this fill point. Then the data contains sub-packets in groups of 5. The
first two integers specify the location of an interior grid point, the next two specify its x and ¥
derivatives, and the last number specifies its coefficient in the linear combination. The process
repeats until all fill point solutions have heen completely specified. In this manner, all fill point
solutions are represented in a single ASCII file.

The FORTRAN code reads the fill point file once at the beginning and stores it in a one-
dimensional array. Then the entire ('artesian grid domain is time advanced using the FORTRAN
code generated in chapter 3. The fill and boundary grid points are time advanced as well using
the interior MESA propagation scheme even though the data is garbage: This avoids the cost of
determining which grid points are interior. Computing all the grid points at once also permits
vectorized and parallelized execution of the MESA propagation scheme as discussed in the next

chapter. After all the grid points in the computational domain are time advanced. the fill points
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are evaluated using the information from the fill point file. Then this process repeats. all grid
poiuts are time advanced. then the fill points are solved. The fill points depend upon the interior
grid points at the same time step, and therefore the interior points always need to be evaluated
first. At the first time step, therefore. it is important to supply the fill points with the correct

initial data. Afterward, the fill points are evaluated using the interior grid point data.
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Chapter 6

Extension to Parallel

Computational Domain

The algorithms presented thus far are capable of very high accuracy and resolution in space and
time. In addition. since they are single-step explicit finite-difference methods that depend upon
local data only. they can be easily implemented on a parallel computer. Since the algorithm
development. can be completely automated as demonstrated, 1t is desirable to also automate
their parallel extensions. This chapter will discuss the procedures necessary to accomplish the
automation that results in the generation of a load balanced. SPMD (Single-Program Multi-
ple Data) model FORTRAN code which uses the MPI (Message-Passing Interface Standard).
The ideas discussed apply to both two and three dimensional problems. but they were only

implemented in two dinensions for this work.

6.1 Domain Decomposition

Developing a load balanced parallel FORTRAN code is greatly simplified by the use of Cartesian
grids for the discretization of the physical domain. Recall that Clartesian grids also simplified the
grid generation process and enabled automated treatment of boundary conditions in complex
geometries. Regardless of the geometry’s configuration. all problems may be approached in the

sane way.
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As discussed. each grid point is defined to be a fill point, interior point, or boundary point.
Rather than testing each grid point, it is more efficient to treat all points as an interior point
and simply time advance the entire computational domain. After advancing all points, then
the fill points are "filled™ with the correct solution using the methods discussed. The boundary
points are never used and so their values are irrelevant.

Therefore, a successful load balancing algorithm in this case will attempt to assign an equal
number of grid points to each node. In most cases. it is not possible 1o achieve an equal number
since the total number of grid lines in the computational domain may not be evenly divisible.
The exact partitioning also depends upon the desired node topology. For example. it may be
desirable to form a chain of 16 nodes in a line for certain duct problems or to form a 4 x 4 grid
of nodes in a bi-periodic open domain problem as shown in the right side of figure 6.1.

In general. it is important to maximize the ratio of computation to communication. though
this constraint may he lessened through the use of asynchronous communication as discussed
later. For the bi-periodic open domain problem the computational domain should he decomposed
into squares as this maximizes the area to perimeter ratio and thus minimizes communication
delays.  Lach square will he assigned o a node and will be time advanced in parallel. At
each timme step, the perimeter of each square nmust be communicated to the node containing the
neighboring square in the computational domain.

Each node uses the same FORTRAN code as is used in the serial (non-parallel) version. The
nodes are assigned the proper initial data by defining the local grid origin in terms of a global
grid origin. Error checking also uses this global coordinate information.

For the most part. each node is solving a rectangular open domain problem with the perimeter
being communicated at each time step. In this way, no distinction is made of the type of data
being communicated (repeated open domain data or neighboring interior grid data). Therefore.
only the actual dimensions of cach node in local coordinates is required. This assignment is
achieved as follows:

1. Assign the minimum number of grid points in each dimension to each node

. total grid points in horizontal divection .
minh = - - - - (G.1)
nodes i horizontal direction

total grid points in vertical divection

minv

(6.2)

nodes iy vertical divection

NASA/TM—1999-209182



2. Assign the following extra points (if any) to the nodes in Round Robin fashion.

extraptsh = total horizontal grid points — (minh x nodes in horizontal direction{6.3)

extraptst = total vertical grid points — (minv x nodes in vertical direction) (6.4)

Starting with the left column of nodes, and proceeding a column at a time, the extra points
are evenly assigned one per column. If there were extra points. then at least one column of
nodes will contain one fewer column of grid points than the other columns of nodes. The same
process is repeated for the extra vertical grid points, starting with the bottom row of nodes and
proceeding one row at a time to the top row. When complete, the nodes will know how many
grid points they have in each dimension.

3. Determine the local maximum coordinates for each node.

At this point, it is known liow many grid points each node is assigned both vertically and
horizontally. It is desired to have the origin of the local grid coordinates occurring in the center
of each stencil so that the original serial code may be used without modification. This requires
carefully assigning the maximum array dimensions of each node. If an even number of grid-
points is assigned to a node. then the maximum and minimum coordinates will differ by one: if

it is an odd number these coordinates will be the same.

number of qrid points assigned
2

1
—

=
-t
=

maxi

mini = —maxior if even mini = —maxri 4 1 (6.6)

4. Find which node contains the origin in global coordinates.

It is necessary for each node to know where its local origin is in relation 1o the physical
problem’s global coordinate system. This is achieved by starting with the absolute value of
the bottom left node's (node 0) minimum local coordinate, mini. Subtracting from this the
maximum global coordinate index, provides the global coordinate in the horizontal dimension

of the center of node 0's local coordinate system.

horizontal center in global coordinate s = —maximum global indcr + [mini] (6.7)
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The global coordinates of the center of the next node to the right of this node is found by adding
the points per node found in step 2 to this value. In a similar manner. the remaining nodes are
assigned their respective horizontal global coordinates at the center of their stencil. Next, the
vertical global coordinates are determined at each center of each node. After this procedure. the
node which contains global coordinates (0, 0) contains the origin of the computational domain.
All nodes can now quickly convert between global and local coordinate systems. The local
coordinate systems simplify the extension of the serial code to the parallel code. The global
coordinate systems permit the paralle] assignment of initial conditions and error checking using
the known analytical solution which are defined in terms of global coordinates.

All nodes will be aligned with their neighboring nodes afier these procedures are completed
as shown i figure 6.1. Alignment means that the boundary between any two nodes will contain
the same number of grid points at both nodes. This alignment simplifies the communication

among nodes,

6.2 Message Passing

The MESA schemes enjoy the advantage of requiring only local data. Some of the schemes in
CAA L such as Compact Differences, require Spline interpolations across the entire computational
domain which restrict their capacity for parallel computations and spread local errors across the
entire computational domain. Also, the actual physics described by hyperbolic partial differential
equations (such as the linearized Euler equations) only depend upon local data contained within
the cone of characteristic curves (the domain of dependence). Indeed. the ('FL coustraint
i based upon this fact and provides some basis into why the MESA methods perform well.
Since only local data is required, communication between nodes is limited to nearest neighhor
communication. Although. for the bi-periodic open domain problem. nodes on opposite sides
of the computational domain must also comumunicate and so one would expect that typical
engineering applications would actually perform hetter since they will have actual boundaries
which reduces the need for commmnication.

Modern parallel computing systems include hardware for communicating and computing
sinultaneously. This capability can be fully utilized with the MESA schenies since the interior of

each square may be time advanced independently of the perimeter communication. To siniplify
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the logic used in communicating, the nodes are assigned an (i) index with (0.0) being the
bottom left node in the network topology. The engineer specifies in advance the desired nuniber
of nodes in each dimension. The computational topology will always be rectangular and is ideally
suited for a mesh or toroidal network topology commonly found in today’s parallel systems. If
maxni and maxnj represent the maximum node count in the i and j directions respectively, then
a particular node’s (node number = nodenumber) coordinates, (nodeinderx;, nodeinder;), are

given by:

nodeinder; = mod(nodenumber, marni)

. nodenumber -
nodeinder; = ————— (6.8)
maxrni

With this indexing. it is straightforward to determine adjacent nodes. An example domain
decomposition using 4 and 16 nodes with & grid points per unit in a niesh computational topology
is shown in figure 6.1. The center of the physical domain is indicated by -f-. The node num-
ber, (nodenumber) and its (nodeinder;, nodeinder;) coordinates are shown inside each node’s
domain.

The grid points identified as B's are not time advanced since a bi-periodic open domain
boundary condition is assumed. Those grid points get their values from the opposite side of the
grid. For example. in the four processor case. the left side of node 2 is identical to the right side
of node 3: the bottom side of node 0 is identical to the top side of node 2: the top left corner
of node 2 is identical to the bottom right corner of node 1. Since each node contains its own
logical memory (MIMD). it does not know the values of the grid points contained within any
other node. It is thus necessary for the nodes to communicate this information.

Sending information requires a node to know the node numbers of its neighbors. However,
since the engineer may select any computational topology. the node topology 1s not known
apriori. However, using the (nodeinder; nodeinder;) information. it is possible to quickly
identify the neighboring nodes. This is done by adding or subtracting one from the coordinates
of its (node inde ;. node indexj) pair. i nodeinder; equals ( then the node is in the left column
and its left node has nodeinder; = marni — 1. 1f nodeinder; equals marni — 1 then the node

is in the right columm and its right node has nodeinder; = 0.
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Figure 6.1: Solving bi-periodic open domain Linearized Euler Equations with MESA

These relations are true for the bi-periodic case, but not necessarily for actual engineering
applications. The application may have radiation boundary conditions or solid wall conditions.
both of which do not require information from neighboring nodes.

Once the new node index pair, (nodeinder; nodeinder;). is determined, it requires conver-

sion to a node number, nodenumber, using the expression:

nodenumber = (nodeinder; * marni) + nodeinde r, (6.9)

The message passing requirements of each node only depends upon its location in the niesh.
If the node 1s not in the bottom row of figure 6.1, for example, then it will always need to
communicate down and receive information from a node with index (node inde r,, node inde rj—1}).
Similarly, if a node is not in the right column of nodes (nodes 3, 7, 1, and 15 in figure 6.1)
then 1t will always need to communicate right and receive information from a node with index

(nodeinder; + 1, nodcinder;).
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6.3 Synchronous Communication

The periodic boundary information needs to be exchanged n the serial { non-parallel version
) of the solver code. The exchange is accomplished by copying the data from one part of the
data array to another (from within the same data storage area). MPI permits a single node
to communicate to itself and so the parallel version running on a single node already has the
information being communicated as in the serial version. For simplicity however, the solver uses
the same communication scheme for any size computational mesh (including the 1 x 1 nesh).
As soon as more than one node is used, then not only does periodic boundary information need
to be communicated (the B's in figure 6.1). but in addition. the outer perimeter of interior grid
points assigned to each node needs to be communicated to its neighboring nodes. The amount
of information to be communicated depends upon the MESA scheme’s stencil size and depth.
which varies with the algorithm used. For example, a ¢202 MESA scheme will require more
data to be communicated than a c2ol MESA scheme hecause each grid point contains more
information. Whereas the ¢9o0 MESA scheme requires the same communication as the c2ol
MESA scheme because 900 requires 4 rows of interior grid points and c20l requires one row of
4 data elements at a single grid point. Recall that some of the significant advantages of small
stencils is their ability to be easily mapped to complex geometries and their high resolution
capabilities.

In figure 6.2, the 5 x 5 stencil for the MESA ¢hol scheme has grid points labeled "X, The
grid point designated "A™ is to be time advanced and requires the grid point information labeled
“X". Notice in this case that hefore “A™ can be advanced in time. node 1 must communicate
with nodes 0. 2. and 3 to get the necessary grid point information {due 1o the distributed memory
model). A larger stencil would require even more information to be communicated. The MESA
schemes that use derivative information at the grid points such as c203 or cdol. may have a
smaller stencil. but will require more information to be communicated since more information
is stored at each grid point; The scalability studies in the next chapter examine the parallel
performance of some of these schemes. In any event, before a time advance of an interior grid
point near the edge of a node’s domain may occur, the neighboring data from the neighboring
nodes must be communicated.

It is often desirable to send fewer, but larger messages than it is to send many smaller
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Figure 6.2: Nearest Neighbor Communication

messages in a parallel system since each message has an associated latency that can seriously
degrade floating point performance. One way to send larger hut fewer messages is to include
the corner information in an implicit inanner. Rather than explicitly communicating corner
mformation as from node 2 to node 1 in the last example figure 6.2, it is possible to implicitly
communicate the corner by having all nodes communicate to their left nodes simultaneously,
then communicate to their right nodes, then communicate to their top and then finally to their
bottom. in that order. In this case. the nodes send not just the interior grid points contained
m their respective domains. but also a few extra columns of adjacent grid points that are not
defined within thelr domam. This has the effect of comumunicating the corner information as
shown in figure 6.3,

In figure 6.3 only the corner information from node 2 heing implicitly communicated to node
I is shown for simplicity. Notice that all nodes have an extra memory buffer on the perimeter of
their defined nodes so that they can receive and store grid point data from neighboring nodes.
The arrows ndicate the direction of information flow and the numbers represent from which
node the information came. The corner of node 2, "C'1”7 is sent 1o node 3, where it is labeled

27 but n addition, the grid point labeled "J 17 in the buffer of node 2 is sent to node 3.
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Figure 6.3: Synchronous Communication, Implicit Corner Fxchange

where it is labeled “J27. At this point. grid point "J27" is junk information since it came from
the undefined grid point “J1”. Then duaring the up/down send operation the grid point laheled
“('2” in node 3°s buffer space, which is the corner of node 2 is sent to node 1 where it 1s labeled
“('37. Even though it is not shown in the figure. after the send operations complete. the grid
point labeled "J2" in node 3 actually gets the top-right interior grid point of node 0. The same
occurs for all the corners in the computational domain.

Notice that the number of separate conmmunications is cut in half using this procedure.
Normally. it would be necessary to communicate left, right, up. down, down-right. down-left. up-
right. and up-left. However, using the slightly larger communication buffers and communicating
this information synchronously (not doing computations and communications simultaneously)
in two steps (left/right and up/down) results in the corners be implicitly communicated. This
eliminates the need to explicitly send corner information which would double the number of
messages sent.

The periodic boundary data in the bi-periodic open domain problem interestingly can use the
same communication scheme to avoid separate message passing of corners. This works despite

the fact that the boundary data is not communicated to topologically neighboring nodes. In
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this work it was possible therefore to treat all the nodes with the same communication logic.

6.4 Asynchronous Communication

While the left /right and up/down communication ordering can effectively exchange all necessary
information, it is necessary to do that in two distinct steps. If left, right, up and down are done
simmultaneously then the corner information will not be communicated properly. It is. however,
desirable to send all the information simultaneously on some parallel systems. In particular, the
SGI ORIGIN2000 on which the parallel results are generated for this work have an additional
communication processor that permits simultaneous computation and communication. Message
passing libraries may then use asynchronous comnnunication calls to get maximal floating point
performance.

In the case of the MESA schemes this requires adding explicit communication calls for
the corner information. To communicate asynchronously (simultaneously send all data and
perform floating point operations), cach node must send data left. right. up, down, right-up,
left-up, right-down. and left-down simultaneously. Despite the doubling of messages compared
to the synchronous case. significant improvement in performance can be realized with the MESA
schemes. This is achieved by advancing the interior points of each node that do not depend
upon information from neighboring nodes while at the same time communicating the outer
perimeter of interior grid points. For a large enough interior, this effectively eliminates waiting
for communicationto complete. By the time the interior set of interior grid points has completed
advancing, the information required for advancing the perimeter interior grid points is done
transferring from the neighboring nodes.

Larger stencils reduce the number of interior grid points on a given node that may be
computed without information from neighboring nodes. However, the Hermitian MESA schemes
serve to shrink the stencil and increase the set of interior grid points on a given node that are
mdependent of neighboring nodes. The Hermitian MESA schemes also increase the amount of
work per grid point since the derivative data is advanced as well. Therefore, the Hermitian
MESA schemes seemi to be good choices for parallel applications. Some results ou the efficiency

of various Hermitian schemes are shown i section 7.3,
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6.5 Generating the FORTRAN Parallel Propagation Code

One of the overall goals of this research has heen to fully automate the code generation pro-
cess. Therefore, the parallel FORTRAN code is also automatically generated and only requires
specifying the dimensions of the mesh of nodes. The domain decomposition is easily automated
because a Cartesian grid mesh is used. Load balancing the bi-periodic open domain problem
is achieved by assigning all nodes approximately the same number of grid points. Each FOR-
TRAN module has a corresponding Mathematica module and all modules communicate through
a FORTRAN common block. The parallel extension relied extensively upon the automatic code
generation Mathematica modules developed for the serial solver code. The extension to paralle]
essentially was an exercise in modifving local coordinate systems and array dimensions.
Specific tuning issues will vary depending upon the target architecture. For example. on
systems without asynchronous communication hardware. it would be optimal to use the methods
of section 6.3. Also. evaluating the fill grid points near walls requires an additional computational
procedure and therefore the nodes with an excessively large set of fill points may be delayed.
In addition, steep gradients may require adaptive grids or adaptive algorithms for their proper
resolution, both of which may unbalance the computational load between nodes. It is likely
some compromise solution that minimizes these effects will need to be developed later.
Nonetheless, the complete automation of the grid generation, algorithm generation, code
generation, and parallel extension. is an advancement in CAA that may be used to advantage

in the development of high accuracy and high resolution solver codes.
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Chapter 7

Numerical Results

In this chapter. some example problems have been chosen which have analytical solutions that
permit detailed examination of the accuracy and efficiency of the MESA algorithms. In addition,
the hnearized Euler equations describe a conservative physical system and therefore, in the
case of no energy sources or sinks, the total energy of the system is constant in time and can
provide an additional check on the numerical stability and dissipation of the schemes. The
numerical stability of the algorithins can be determined analvtically for open domain (no walls)
problems, but the addition of complex wall geomietry complicates the analysis. Techniques such
as the Matrix Method or long running nunierical experiments [100] are brute force methods of
determining stability. The Matrix Method requires reducing the algorithms to a linear system
of equations in which the eigenvahies of the matrix are examined. If all the eigenvalues are less
than one, the method with that particular geometry i1s numerically stable. However, for typical
problems the matrix is simply too large to do this efficiently, even in Mathematica. In this work,
the MESA algorithms with wall boundaries are tested with long running experiments.

Both two and three-dimensional results will be discussed and will demonstrate the significant
unprovement in performance of the MESA schemes over traditional numerical methods. Finally,
the two-dimensional MESA schemes are tested for their scalability on a typical MIMD parallel

computer.
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7.1 Two-Dimensional Problems

Most work in CAA is accomplished in two-dimensions today because of computer costs and the
complicated grid generation required for complex geometries. And, perhaps most importantly, it
is necessary to validate the new concepts in two-dimensions before extension to three-dimensions.
For these and other reasons, the two-dimensional MESA schemes were developed and verified
first.

The first two-dimensional case to be analyzed was the biperiodic open domain problem
which tests the propagation, efficiency, and stability of the MESA schemes without geometry.
Next. the rotated box cases test the stability and accuracy of the MESA schemes with straight
wall boundaries. And finally. the circle case tests the stability and accuracy of the MESA
schenies with curved wall boundaries. All cases were successful in demonstrating the accuracy
and stability of the methods discussed in this dissertation. An overview of the geometry and
fill point mapping for the test cases with wall boundaries at low grid resolution is shown in

figure 7.1.

7.1.1 Bi-Periodic Open Domain up to 29" order accuracy

The bi-periodic open domain problem is one in which the physical domain is a unmt square
([=1.1] x [=1. 1] x [0. T]). The solution of the linearized Euler equations in this case is assumed
to he v-periodic {top and bottom of hox repeat) and x-periodic (left and right sides of box
repeat). Using separation of variables with periodic boundary conditions, on the linearized

Euler equation system:

dn du du  Op

- ;l[,v_— J,\[, - — = 0.

or T gy T dy  or

v de dv o Op

_ ;‘[,v~+;1],+ .—_:0, —-l

ar Tar Ty T oy (7.1)
o ) op ou O
LS VIR Y R A AL )
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with boundary conditions :

pllyt)=pl(—=t y 1)

w(l.y. t) = u(—1.y. 1)
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v(l,y.t) = v(—=1,y.1)
ple,1,t) = p(x, —1.1)
u(e, Lt) = u(x, —1.1)

ela, 1,1) = (e, —1.1)

provides the following analytical solution:

ple oy t) = COS(‘:Tf\/E) sin(m (= (Mpt) + 2)) sin{w (— (M,1) +y)) (7.2)

cos(m(— (M, 1)+ r)) sin(wtv/2) sin(w (= {(Myt)+y))
V2

u(r. y.t)y=—

g t) = _cos(n(—(;\lyt) + y))sin(wtﬂ)sin(w (— (M 1)+ 2))

In figure 7.2, the slopes of the plots are determined by the accuracy of each algorithm. Next

(v.4)

to each algorithm in the legend of figure 7.2 is the formal order of accuracy in space and time for
the MESA scheme being graphed. The notation "¢2d3™ in the legend represents the c2o3 M ESA
scheme with a 2 x 2 stencil that has (3+1)% data values per grid point for each primitive variable.
The actual data for these plots can be found in tables 7.1.7.2. and 7.3. The first column in the
tables represents the number of grid points per half-wavelength. The second column represents
the number of time steps. And the remaining columns show the maximum error in the pressure
for each MESA scheme. Notice that the 237 order c2oll scheme is performing worse than the
197 order ¢209 scheme due to the round off error from the high order spatial interpolation. This
effect is known to occur in divided difference formulations [89] and while approaches for reducing
this effect exist, it has not currently been pursued in this work. The need for higher precision
floating point hardware is confirmed in figures 7.3 and 7.4 where the higher order schemes are
rendered ineffective due to the round-off error. The higher order Hermitian methods are more
computationally efficient than the lower order methods and require less memory to achieve a
given maximum error. This efficiency is the result of the increased resolution of the higher order
Herniitian MESA schemes which do not require as many grid points per wavelength.

Notice that the highest order scheme in table 7.3, the 20U order ¢2ol4. actually resolves well
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Figure 7.2: Maximum Absolute Error at tiine=10, with convection Mx=My=1

with two wavelengths per grid point! This is not a contradiction of the Nyquist criterion [85],
however, since there are actually more than 4 data elements per wavelength: The ¢2014 Her-
mitian MESA scheme has additional derivative information at each grid point as discussed in

chapter 3.

7.1.2 Rotated Box at 2"/ order accuracy

As a test of the wall boundary formulation, a box was rotated at various angles relative to
the Cartesian grid and grid resolution studies were performed on each rotated case. Their
analytical solutions were derived using separation of variables in which no convection is present
(M, =M, =0).

For the unrotated case (box walls parallel to the Cartesian axes and positioned directly on

the Cartesian grid points). boundary conditions on the left and right walls are:

prieyt) = Our==1L1,-1>y<1,t>0 (7.5)
u(r,yd) = Oa=—-11.-1>y<1.t>0 (7.6)
vele oy ity = Oa=—-11,-1>y<1.t>0 (7.7)
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c200

c2ol

c202

c203

c2o04

4.19313D-01
5.98758D-02
8.79878D-01
3.96398D-01
9.00479D-01
8.94956D-01
8.34516D-01

4.19313D-01
5.98758D-02
7.48778D-01
2.17517D-01
3.23784D-02
4.18709D-03
5.29728D-04

1.65510D-01
2.74867D-02
2.65588D-02
9.07266D-04
2.90656D-05
9.16133D-07
2.87272D-08

7.66908D-02
4.86309D-04
1.44219D-04
2.03451D-06
1.62115D-08
1.27500D-10
1.90326D-12

4.94527D-02
6.40222D-06
1.34963D-06
2.83584D-09
5.51315D-12
1.44773D-13
1.18994D-12

un n
2/4 100
I 100
2 100
4 200
8 400
16 800
32 1600
2/4 1000
1 1000
2 1000
4 2000
3 4000

16 8000
32 16000

1.55423D-01
8.40688D-02
2.38576D-01
2.43055D-01
2.44184D-01
2.44466D-01
2.44537D-01

1.55423D-01
8.40688D-02
2.38576D-01
2.13560D-01
8.25183D-02
1.31469D-02
1.71994D-03

9.83802D-02
8.40688D-02
4.65859D-02
2.08231D-03
7.29347D-05
2.39209D-06
7.65553D-08

1.87211D-01
3.49359D-02
5.78433D-04
5.52436D-06
5.17616D-0%
3.68410D-10
1.01852D-10

1.90080D-01
1.64820D-03
2.55880D-06
0.29425D-09
2.25119D-11
6.28685D-11
9.98046D-11

2/4 [ 10000
1| 10000
2 | 10000
4| 20000
& | 40000

16 80000
32 | 160000

6.55393D-01
2.16718D-02
7.64079D-01
T.78425D-01
7.82039D-01
7.82944D-01
7.83171D-01

6.55393D-01
2.16718D-02
7.64079D-01
7.78425D-01
7.55472D-01
2.88551D-01
4.49201D-02

4.01590D-01
2.16718D-02
7.44662D-01
7.40483D-02
2.50441D-03
7.93319D-05
2.48506D-06

3.12759D-01
2.06896D-02
2.02987D-02
1.75117D-04
1.40537D-06
9.37781D-09
1.06107D-08

3.09936D-01
6.08435D-03
1.14498D-04
2.40618D-07
2.96213D-09
6.05023D-09

Table 7.1: Maximum Absolute Error of 2D Algorithms at time=10.100.1000, 1*' - 9'* order

And on the top and bottom walls the houndary conditions are:

pleyt) = 0.-1>0r<l.y==-1.1.1>0 (7.8)
uy(r,yt) = 0.=-1>2<liy=-1,1,1>0 (7.9)
vy ty = 0 -1>a<1ly=-1L1t>0 (7.10)

which are the direct result of the equations 5.1. 5.2 . and 5.3 when the box is not rotated.
These boundary conditions are not multidimensional in the sense of coupling the v and v veloc-
ities.
The analytical solution to this problem is:
- (cos(ﬁrri) cos{mar) ('os(7ry)>
cos(m y) sin(vV2 1) sin(7 2)

V2
B cos(m 2) sin(vV2 7 f) sin(w Y)

V2

plr.oyt) =

wle, y ) = -

oyt

NASA/TM—1999-209182



un n c20h c206 c207 c208 c209
2/4 100 1.33692D-02 | 1.00134D-03 | 5.34796D-05 | 2.03112D-06 | 2.21581D-08
1 100 1.01308D-06 | 1.98289D-08 | 2.59540D-11 | 1.88191D-12 | 1.17385D-12
2 100 5.49155D-09 | 1.64495D-11 | 1.14436D-13 | 2.78083D-13 | 8.64669D-13
4 200 2.65099D-12 | 3.54161D-14 | 5.54556D-14 | 1.97731D-13 | 6.28071D-13
8 400 2.85993D-13 | 3.04090D-13 | 3.31901D-13 | 5.62439D-13 | 1.30090D-12
2/4 | 1000 | 1.27864D-01 | 1.16246D-02 | 6.08718D-04 | 2.46354D-05 | 4.04596D-07
1 1000 | 3.49923D-05 | 6.17069D-07 | 6.79935D-09 | 4.837056D-11 | 1.17557D-11
2 1000 | 1.30081D-08 | 4.54192D-11 { 5.56258D-12 | 5.83170D-12 | 7.37743D-12
4 2000 | 1.92279D-11 | 1.52294D-11 | 1.55838D-11 | 1.51723D-11 | 9.19279D-12
8 4000 | 2.41547D-11 | 2.41659D-11 | 2.39646D-11 | 2.47488D-11 | 2.67018D-11
2/4 1 10000 | 3.10413D-01 | 1.06928D-01 | 5.98842D-03 | 2.55310D-04 | 5.86179D-06
1 10000 | 2.64469D-04 | 4.82240D-06 | 2.86311D-08 | 3.17661D-10 | 2.45649D-10
2 10000 | 4.53566D-07 | 9.61101D-10 | 4.34392D-10 | 4.38126D-10 | 4.34236D-10
4 | 20000 | 1.45415D-09 | 1.39003D-09 | 1.39202D-09 | 1.39189D-09 | 4.34286D-10
8 | 40000 | 2.60486D-09 | 2.60449D-09 | 2.60512D-09 | 2.60578D-09 | 4.40577D-10

Table 7.2: Maximum Absolute Error of 2D Algorithms at time=10,100,1000, 11" - 19" order

The box is rotated about the origin of the Cartesian grid which is located at the center of
the hox. Its analvtical solution is found by simply rotating the coordinates in equation 7.11 as
well. The velocity boundary conditions are inherently multidimensional in the rotated case as
discussed m chapter 5.

Table 7.4 shows the maximum error in the pressure variable from using the c300 MESA
scheme applied to the box rotated to 5 different positions. The first column of the table is the
number of grid points per half-wavelength.

Table 7.5 shows the change in total system energy as a fraction of the initial total system
energy. The total system energy should not change within the rotated box: The ratio should
always be 1. The total energy is the summation of p(r, y)* 4+ u(x. y)* + v(r. y)° evaluated at all

interior and fill grid points.

7.1.3 Circle at 2" order accuracy

A more complicated geometry in two-dimensions is the unit circle. Its orientation to the grid
B A g

lines covers all angles resulting in many more unique boundary condition equations since the

direction of the normal and tangent vectors on the circle’s walls vary at all locations.

It too has an analytical solution whicli is developed as follows. First, the hnearized Euler
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un n c20l10 c2oll c2012 c2013 c2ol4
2/8 100 | 2.20965D-03 | 2.47006D-04 | 2.05753D-05 | 1.79199D-06 | 1.67255D-06
2/4 100 | 4.48519D-10 | 1.31774D-10 | 4.10446D-10 | 1.56559D-09 | 5.34823D-09
1 100 | 5.99623D-12 | 1.37090D-11 | 6.43737D-11 | 7.08256D-11 | 3.81599D-10
2 100 | 2.19150D-12 | 6.59328D-12 | 4.29244D-11 | 7.90291D-11 | 2.36003D-10
2/8 | 1000 | 2.32224D-03 | 2.94998D-04 | 7.83313D-05 | 5.41336D-06 | 8.72029D-06
2/4 | 1000 | 7.56043D-09 | 6.57392D-10 | 5.30117D-09 | 7.33124D-09 | 2.22549D-08
1 1000 | 1.36526D-11 { 3.80372D-11 | 3.48912D-10 | 4.21926D-10 | 2.32803D-09
2 1000 | 9.60959D-12 | 2.50860D-11 | 2.05130D-10 | 1.68643D-10 | 9.40085D-10
2/8 1 10000 | 2.66386D-01 | 2.63985D-02 | 1.41920D-03 | 8.52095D-05 | 4.02444D-05
2/4 | 10000 | 1.09827D-07 | 8.79307D-09 | 8.15401D-08 | 4.70767D-08 | 9.65443D-08
1 10000 | 3.46658D-10 | 3.32700D-10 | 1.08017D-09 | 1.78962D-09 | 5.42603D-0Y
2 L0000 | 4.49754D-10 | 5.24886D-10 | 1.90765D-09 | 1.122389D-09 | 3.16877D-09

Table 7.3: Maximum Absolute Error of 21D Algorithms at time=10,100,1000, 21°" - 29" order

%— a =0 a =iz a =g n =7 a =%

8 6.00340E-01 | 5.88561D-01 | 7.29709D-01 | 9.72177D-01 | 7.79207D-01
16 | 9.22801E-03 | 2.78385D-02 | 1.69012D-02 | 1.18011D-01 | 6.32180D-02
32 | 2 16148E-02 | 2.51592D-02 | 3.03067D-02 | 3.95514D-02 | 3.41046D-02
61 | 6.527G1E-03 | 7.24661D-03 | 9.43153D-03 | 1.25927D-02 | 1.09241D-02
128 1 L6GI21E-03 | 1.84735D-03 | 2.43511D-03 | 3.19933D-03 | 2.84123D-03
256 | 1.120538E-04 | 4.64566D-04 | 6.10075D-04 | 8.22738D-04 | 7.122438D-04

Table 7.4: Maximum Error in p at t=10, ¢300 scheme applied to box rotated hy

equations without convection are expressed as the wave equation.

Op _ A p
ot?

e

>p

oy

Then. this is rewritten into polar coordinates [113],

9*p _ ap
atrr T o

L éap
rche

1 (')"'])
r? 00%

with 0 < r< l.—7 < # < x.t>0. And with the initial/boundary conditions.

p(L.6.1)
pr(l8.1) =

pr 0.0) =
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}]—1 a=0 o =7 a=z a =% a=7%

8 1.31769D-01 | 1.57350D-01 | 1.02348D-0!1 | 3.54850D-02 | 2.33908D-02
16 2.14386D-01 | 8.72280D-01 | 8.22221D-01 | 6.50197D-01 | 7.22285D-01
32 9.88311D-01 | 9.90026D-01 | 9.81165D-01 | 9.77070D-01 | 9.75765D-01
64 | 1.00151D+00 | 9.99237D-01 | 9.98688D-01 | 9.97840D-01 | 9.98150D-01
128 | 1.00134D400 | 9.99869D-01 | 9.99895D-01 | 9.98897D-01 | 9.99860D-01
256 | 1.00072D400 | 9.99931D-01 | 1.00000D+00 | 9.99518D-01 | 9.99997D-01

Table 7.5: Energy Ratio (should be 1) at t=10. ¢300 scheme applied to box rotated by a

pe(r.0.0) = 0.0<r<]l, —7<f<m (7.19)
the analytical solution is:
5Ja(Ar) cos(At)
)= ——— .20
p(r.0.1) NCAIY (7.20)
with A = 3.83171.
Ju is the Bessel function of the first kind of order 0 and it is defined by:
(7.20)

Jolx) = i (_;_})”7(%):;1

The linearized Euler equations include the w and v variables which are not part of the wave
equation 7.14. But the p variable will have solution 7.20 and can be used to test the accuracy

of the algorithms if the additional initial conditions are assumed:

A
IN

ule,y,0)=0,-1<

IA
|
—

IA

<
A

e(r.y.0)=0. -1 <

Table 7.6 shows the maximum error in the pressure variable from within the circle at 3 moments
in time. The first column in the table represents the number of grid points per half-wavelengtl.

Table 7.7 shows the change in total energy of the system within the circle. As in the rotated

hox case. the ratio should always be 1.
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% t=10 t =100 t = 1000

8 2.29533D+00 | 7.03234D+00 | 3.67081D+00
16 6.05969D-02 | 1.12127D+01 | 3.61856D+00
32 2.28263D-01 | 2.02830D+00 | 1.92185D+400
64 5.96043D-02 | 2.15448D-01 | 9.27343D+00
128 | 1.50125D-02 | 3.44447D-02 | 2.46248D400
256 | 3.85009D-03 | 7.47578D-03 NA

Table 7.6: Maximum Error in p at t=10.100.1000

, €300 scheme applied to circle

7 t=10 t = 100 t = 1000
8 | 3.43444D-01 [ 8.72832D-04 | 8.70954D-04
16 | 9.53462D-01 | 3.80642D-01 | 7.56545D-05
32 | 9.93788D-01 | 9.30932D-01 | 4.81021D-01
G4 | 9.99809D-01 | 9.93336D-01 | 9.34796D-01
128 | 1.00021D400 | 9.99340D-01 | 9.94067D-01
256 | 1.00004D+00 | 9.99928D-01 NA

Table 7.7: Energy Ratio (should be 1) at t=10,100.1000. c300 scheme applied to circle

7.1.4 Unrotated Box up to 11" order accuracy

The wall boundary formulation for methods higher than 2" order have not provided stable
solutions, so far. on Cartesian grids with unaligned wall houndaries. This is not unexpected
since the highest accuracy wall boundary scheme reported in the literature on a Clartesian
grid is 374 order and uses Lagrangian interpolation [45]. Most ('artesian grid based boundary
conditions are 1°" order accurate and some new work using a finite volume formulation is 274
order accurate [27].

However. the case in which the geometry is aligned with the grid does provide stable solutions
up to at least 11" order accuracy. The results for the unrotated hox problem are shown in
figure 7.5. The legend in this figure shows the algorithm type and its accuracy. Notice that the
high resolution of the Hermitian schemes with solid wall boundaries in this case is similar to the
bi-periodic open domain results of section 7.1.1. These results suggest there may be a way to
extend this approach to the unaligned wall boundary case which will maintain high resolution
and efficiency.

In tables AUl A20 A3, and A4 the maximum error of the pressure in the unrotated hox

is shown at various times for various grid resolutions. The energy should not change with time
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Log 2 of grid points per wavelength

B Error VS. Grid Density
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Figare 7.5: Unrotated box grid resolution studies. no convection, time=10

inside the box and therefore the energy ratio shown in the last column should always be one.

7.1.5 Complex Geometry Demonstration Mappings

These mappings are very preliminary and are included mierely 1o demonstrate the potential
flexibility of using the Cartesian grid mapping schemes developed in this dissertation.

In figure 7.6, an annular duct is described using 4 parametric curves, one per each half circle.
The grid points inside the inner circle are labeled as boundary points and those grid points
whose stencil intersects either circle are the fill points indicated by small open circles. and the
dark circles are the interior grid points that can be time advanced using the standard MESA
schemes with stencil width less than 4. The arrows indicate where the fill points are mapped to
the wall using the automated methods discussed earlier in chapter 4. The shaded hoxes indicate
which data is used to interpolate the fill points in that box and the number indicates the order
in which the fill points are solved as discussed in section 5.2. When a shaded box overlaps a
neighboring box. the lower numbered box’s fill points are treated as an interior grid point in
the higher numbered hox since those fill points will have been previously determined using the
lower numbered box's spatial interpolant.

In figure 7.7. a grid for the three airfoil cascade is labeled with a grid spacing of & grid

points per wnit interval. In figure 7.8, the fill points are mapped to the wall boundaries. If the
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Rotation Angle = 0
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Figure 7.8: Airfoil Cascade Fill Point Mapping in 2D. lun==8

grid point resolution changes then the set of fill points will change- therefore a new mapping is

required at each grid resolution.

7.2 Three-Dimensional Problems

Many interesting and challenging acoustical problems are inherently three dimensional. such as
the generation of noise in the jet. plume from a complex three-dimensional shear layer and the
propagation of duct modes from the fan out the inlet. Some researchers are attempting 3D
simulations through the use of 4 order time accurate Compact Difference schemes on large
parallel systems [81] and [86]. However, progress in these efforts requires improvement in the
computer architectures and may require many years before the parallel systems can provide the
floating point performance required for complete simulations. In this work, the MESA schemes
were extended to 3D and applied to the tri-periodic open domain. The results, as expected,
match the results from the 2D cases. and demonstrate the significant advantage of the MESA
schemes in 3D - namely. the high order schemes with Hermitian data are very computationally

efficient.
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7.2.1 Tri-Periodic Domain up to 27" order accuracy

The tri-periodic open domain problem is one in which the physical domain is a unit cube
([-1.1] x [-1.1] x [-1.1] x [0, T]). The solution of the linearized Euler equations in this case
1s assumed to be x, y, and z-periodic. Using separation of variables with periodic houndary

conditions, on tle linearized Euler equation system:

@Hfd +uy3—”+M S” 3 3—;+f)i:o
%+M,%}+ uya) + M. (i"+%:
%JFAI,%H@%HL%WL%:o. (7.24)
% J\[r%+;\1y%+ﬁ\lg% %:O.
with boundary conditions :
plliy =)y =p(=Ly =.1)
u(loy, = t) = u(—1,y,2,1)
oflLy. 2.ty =rv(=1y. 2. t)
wil.y. =, t) {(—1l.y. z.1)
ple. Loz )= ple.—1.2.1)
w@. .z )= u(xr.~1,z,1) (7.25)
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then the analytical solution is:

pley, =)= (‘,OS(\/g‘:Tf) sin(m (= (mzt) + ) sin(x (= (myt) +y)) sin(x (= (m=1) + )

cos(m (— (mxrt)+r)) sin(v3mt) sin(w (= (myt) + y)) sin(7 (= (mz1) + z))
u(x, y, 2, t) = — 7

(7.27)

cos(m {— (myt) +y)) sin(v3mt) sin(m (= (met)+2)) sin(r (= (mz1) + 2))
vle,y, 2. t) = — 7

cos(m (—(mzt)+ z)) Sin(\/i—hrt) sin(x (= (mat) +x)) sin(7 (= (myt) +y))
w(r,y. z.1)=- 7

(7.29)

Some of the grid resolution studies for the three-dimensional open domain problem are shown

in figure 7.9. The actual numerical results of the maximum error in pressure is presented in
tables 7.8, 7.9, and 7.10. The first column in the tables represents the number of grid points
per half-wavelength. The second column represents the number of time steps. These results
show the same high resolution performance as occurred in the two-dimensional case discussed
in section 7.1.1. Recall from section 3.2.8 that the Recursive Tensor form of the MESA schemes
is most efficient in three spatial dimensions and since the algorithms maintain their high fidelity
characteristics in three dimensions (as shown in figure 7.9), the MESA schemes are ideally suited

for simulating three-dimensional acoustics applications.

7.3 Parallel Scalability Studies

A test of the scalability of the MESA algorithms on a MIMD parallel computer was performed.
The tests maintained the same work load on each processor by proportionately increasing the
size of the problem domain. These tests were performed to determine the MESA scheme’s

suitably for large scale caleulations.
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: Maximum Absolute Error at time=10, with convection Mx=My=1 in 3D

iun n c2o0 c2ol c202 c203 c204

2 100 | 5.14980D-01 | 4.80224D-01 | 2.19467D-02 | 2.21123D-04 | 1.19505D-06
4 200 | 5.29551D-01 | 1.76508D-01 | 7.92145D-04 | 1.90437D-06 | 2.59532D-09
3 400 | 5.33243D-01 | 2.83486D-02 | 2.58839D-05 | 1.51990D-08 | 4.95182D-12
16 K00 | 5.33975D-01 | 3.79304D-03 | 8.23234D-07 NA NA

2 1000 | 7.70364D-01 | 7.70364D-01 | 2.87374D-01 | 3.36613D-03 | 1.838335D-05
4 2000 | 7.92161D-01 | 7.79106D-01 | 1.21498D-02 | 2.86228D-05 | 3.98826D-08
8 4000 | 7.97684D-01 | 3.40102D-01 | 3.93693D-04 | 2.28286D-07 | 6.71208D-11
16 | 8000 | 7.99070D-01 | 5.47790D-02 | 1.24325D-05 NA NA

Table 7.8: Maximum Absolute Error of 3D Algorithms at time=10, 100, 1*" - 9" order

n n c20) c206 c207 c208 c209
278 1 100 | 1.91686D-01 | 2.28186D-01 | 1.72699D-01 | 1.22931D-01 | 2.62557D-02
2/4 100 | 9.04854D-03 | 3.24260D-04 | 1.21824D-05 | 8.56003D-07 | 3.24471D-08
1 100 | 1.34961D-06 | 3.04300D-08 | 2.13233D-10 | 1.60284D-12 | 1.77729D-12
2 100 | -1.38982D-09 | 1.11129D-11 | 1.59497D-13 | 2.45484D-13 | 7.44085D-13
2/8 1 1000 | 5.16638D-01 | 3.62910D-01 | 3.64724D-01 | 3.81452D-01 | 2.70304D-01
2/4 | 1000 | 1.22614D-01 | 1.12744D-02 | 6.13017D-04 | 2.34683D-05 | 4.08609D-07
l 1000 | 9.65867D-06 | 1.55124D-07 | 2.92799D-10 | 7.56860D-12 | 8.00895D-12
2 1000 | 7.11438D-08 | 2.06639D-10 | 4.40782D-12 | 1.54260D-12 | 6.435310D-12

‘Table 7.9: Maximum Absolute Error of 3D
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iun n ¢2010 c2oll c2012 c20l3
2/8 | 100 | 2.32539D-03 | 6.82271D-05 4.37158D-05 | 9.34356D-05
2/4 1 100 | 9.79661D-10 | 9.31879D-10 2.51697D-09 | 9.52672D-09
1 100 | 4.85311D-12 | 1.99288D-11 | 5.96948D-11 | 2.22166D-10
2 100 | 1.99729D-12 | 7.20823D-12 | 4.16325D-11 | 6.67628D-11
2/8 1 1000 | 3.64564D-02 | 2.28424D-03 2.03252D-04 | 6.65306D-04
2/4 | 1000 | 8.75725D-09 | 2.90691D-09 1.36760D-0% | 2.87604D-08
1 1000 | 1.73786D-11 | 5.33308D-11 | 2.32239D-10 | 5.28682D-10
2 1000 | 8.31935D-12 | 2.41510D-11 | 3.56261D-10 | 1.48749D-10

Table 7.10: Maximum Absolute Error of 3D Algorithms at time=10. 100, 21°" - 27 order

7.3.1 Bi-Periodic Open Domain up to 21*' order accuracy

By simply repeating the bi-periodic unit interval open domain in both the x and y directions, it
is possible to maintain the same work load per processor as the nuniber of processors is increased.

I figure 7.10 a plot of the wall-clock execution time versus tlie number of parallel compute
nodes is shown. The legend in the figure shows the MESA scheme used and its niaximum error
in pressure across all grid points. The table of numerical data used to create figure 7.10 may be
found in section A.2.

This test was designed so that the wall-clock time should not change as the number of pro-
cessors used is increased. Notice. however. that the lower order schemes are not as scalable as
the 11igher order schemes as the numiber of processors increases. In particular, using more than
64 processors can result in rapidly decreasing scalability. This is likely due to the network’s
interconnect architecture on the SGI system being optimized for groups of 64 (the typical max-
imum size of ORIGIN 2000 systems). The 256 processor ORIGIN system from which these
results were obtained is. in fact, the only one of its kind in the world at this time and therefore
its interconnect is likely not optimized for 256 processors. Nonetheless. the scaling performance
quickly improves as higher order MESA schemes are used.

Next, the grid resolution is doubled and the same set of MESA algorithms are tested. As
shown in figure 7.11 the same trends observed in figure 7.10 can be seen. but they are less
pronounced. And in figure 7.12 where there are 32 grid points per unit interval. even the
203 scheme shows good scalability. These graphs suggest good scalability is achieved by using
higher order schemes and/or using inereased grid resolution. Inereasing the grid resolution or

increasing the stencil depth have the effect of increasing the amount of interior work that a
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Figure 7.10: Scalability Performance to time=10, with convection Mx=My=1. iun==8§

node may do before information must be communicated between nodes. However, increasing

the grid resolution is less efficient on a single node than using a higher order MESA scheme as

sections 7.1.1 and 7.2.1 have shown. Therefore, for best results, one should use the higher order

MESA schemes to achieve not only high resolution, but single node efficiency and parallel node

scalability.
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Chapter 8

Conclusions and Future Research

8.1 Summary

A new approach for solving computational aeroacoustics problems has been developed that
eliminates the labor intensive tasks of grid generation. algorithm creation, code development
and debugging commonly associated with these types of problems. This approach uses a higher-
level language, Mathematica, to create a faster, lower level implementation in FORTRAN. Qur
new auntomated approach has the capacity to design sophisticated FORTRAN codes which are
necessary for using the MESA schemes to solve acoustical problems with complex bodies on large-
scale parallel computer systems. The MESA schemes [34], [35], [36] provide the basic numerical
foundation, in this work. for solving the computationally demanding acoustics problems since
they can be designed in an automated manner with arbitrarily high accuracy and resolution in

space and time.
8.1.1 Scientific Developments in the Thesis

The following technical results were accomplished in this work:

¢ Automatic construction of the MESA methods in Mathematica as discussed in chapter
3. Both the spatial interpolation and tiie advancement processes of the MESA method

were automatically created for both two and three spatial dimensions and were validated
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by comparing them with the exact solution.

e Automatic generation of the FORTRAN code necessary to efficiently use the MESA meth-
ods as discussed in chapter 3. All three algebraically equivalent forms {Finite Difference.
Spatial-Temporal, and Recursive Tensor) of the MESA methods were automatically writ-
ten into a FORTRAN code. The FORTRAN code was validated by comparing its results
with earlier hand-written codes and by checking them with the exact analytical solution

available in the test problems.

e Developed a method for the reduction of all possible stencil configurations to a small set

that could be efficiently mapped.

o Automatic mapping of all the near houndary grid points to the wall boundary in a way that
insures local spatial interpolants can be generated near the walls as discussed in chapter
4. The locally defined spatial interpolants were then evaluated to solve for the values of
the near boundary grid points. This mapping will work for any order Hermitian MESA

scheme using a 2 x 2 staggered stencil.

e Automatic stencil selection to prochuce numerically stable 2" order wall boundary treat-
ments as discussed in chapter 5. The near boundary grid points must be evaluated n a
particular sequence that minimizes the use of wall boundary information and maximizes

the overlap of the domain of dependence of the spatial interpolants.

e Automatic parallelization of the FORTRAN code using MPI as discussed in chapter G.
All domain decomposition, FORTRAN code generation, and message passing logic were

accomplished without human assistance on a bi-periodic open domain problem.

8.1.2 Applications of the Scientific Developments

The following numerical experiments were completed in this thesis using the code generation

tools:

o The two ditensional hi-periodic open domain wave propagation probleni. which previously
had been solved using only a 5" order accurate MESA scheme [34]. has now heen solved

using up to 29" order accurate MESA methods.
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e The MESA scheme was extended to three spatial dimensions and the tri-periodic open

domain wave propagation problem was solved using from 279 to 29" order MESA schemes.

® A unit square was embedded in a Cartesian mesh and the wave propagation on the interior
of the square was simulated. It was possible to use from 2" to 11'* order accurate MESA

schemes when the box was unrotated and aligned with the Cartesian grid.

¢ The same unit square was rotated about its center and only the 27¢ order method was
numerically stable. Also, a unit circle was embedded in a Cartesian mesh and the wave
propagation in its interior was simulated. As occurred with the rotated square test prob-

len, only the 2"¢ order MESA method was numerically stable.

e The bi-periodic open domain wave propagation problem was solved in parallel using up
to 256 processors and using the 3" through 23" order accuracy MESA schemes. As

expected, excellent parallel scalability was observed.

8.2 Conclusions

One significant advantage of the MESA schemes on Cartesian meshies is their stencils may
he kept to a small 2 x 2 or 2 x 2 x 2 foot-print. These small stencils. when used with high
accuracy Hermitian MESA schemes may have a significant role 10 play in solving linear first-
order hyerbolic systems of equations with irregular wall boundaries because of the following

advantages. They:
o require less memory to achieve a particular error tolerance,
e are more efficient at achieving a particular error tolerance.
o obtain better resolution {up to 2 wavelengths per grid point with 29" order method).
¢ maxunize parallel efficiency (nearly perfect scalability),
e are most efficient when using the Recursive Tensor form,
e are easier to code in the Recursive Tensor form (the code reduces to a few lines).

e can exceed the accuracy of today’s computer floating point hardware.
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e maintains high accuracy for long time periods (ideal for time dependent problems).

e can be used to interpolate near boundary grid points without violating C'FL condition.
e can achieve any level of accuracy in space and time.

e can be fully automated.

In short, the exceptional strengths of the Hermitian MESA schemes and the automatic code
generation tools in this dissertation provide a productive framework from which to develop the
more sophisticated FORTRAN codes required in the future to develop a turnkey approach to
solving first-order linear hyperbolic partial differential equations in complex domains on large-

scale parallel computers.

8.3 Future Work

The Hermitian boundary treatments (374 order or higher) are not numerically stable at this
time for generalized, irregular wall boundaries. The 1ssue is related to the difficulty of Birkhoff
interpolation that must be done at each stencil [73]. 1t is in fact. a current topic of research n
the mathematical research community dealing with approximation theory. But there 1s reason
to believe this approach will be successful since the unrotated box case worked and because the
MESA scheme itsell uses the same spatial interpolation scheme-which is clearly successful.

Once a stable spatial interpolation process is found in two-dimensions, this will be extended
to three-dimensions. Also, work is currently underway to extend the MESA schemes to variable
coefficient and nonlinear systems. Their complexities will be minimized by using the same
code generation approach previously discussed. Preliminary results suggest the high resolution
Hermitian MESA schemes may be ideally suited to solve the viscous nonlinear Navier-Stokes
equations.

With 1hose tasks completed. it will then be possible to simulate the acoustics in a ducted

airfoil cascade or to examine the effects of nozzle geometry on jet noise generation in detail.
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Appendix A

Data from Numerical

Experiments

This appendix provides the actual numerical results obtained from the many FORTRAN codes
generated with the automation tools developed in this work. This data was collected from SGI
systems with R10000 ('PU’s.

The first section shows the absolute error and energy ratios for an unrotated box at various
times. This data is plotted at time. t = 10, in figure 7.5. The results are as expected and
demonstrate the wall boundary treatment is at the same order of accuracy as the interior MESA
schieme.

The second section shows the wall-clock execution time of the various MESA schemes with
parallel extensions. This information is presented in graphical form in figures 7.10.7.11. and 7.12.

The results demonstrate the parallel scalability of the MESA algorithms up to 236 PrOCessors.

A.1 Unrotated Box Numerical Data

In this section. the Hermitian schemes on 2 x 2 stencils are applied to the unrotated box problem
as discussed i section 7.1 All results are presented in the following tables for up to 11" order
accuracy. The first column shows the nondimensionalized time at which the data is gathered.

The second column shows the number of grid points per half a wavelength, iun. The third
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time | iun error energy
1 2 3.03409D-01 | 8.44204D-01
1 4 2.68635D-01 | 5.61817D-01
1 8 4.46000D-02 | 1.02293D+00
1 16 | 2.72473D-03 | 1.05281D+00
10 2 | 1.32696D~+00 | 1.62567D+00
10 4 9.24036D-01 | 6.49811D-04
10 8 4.39834D-01 | 3.40264D-01
10 16 | 4.15104D-02 | 9.27166D-01
10 32 | 2.99916D-03 | 9.99615D-01
10 64 | 2.28536D-04 | 1.00247D+00
100 2 4.25006D-01 | 1.62567D+00
100 4 2.41269D-01 | 5.90033D-05
100 8 2.47026D-01 | 1.35196D-05
100 | 16 | 1.26843D-01 | 4.39830D-01
100 | 32 | 9.22886D-03 | 9.66763D-01
100 | 64 | 6.31680D-04 | 1.01000D+00
1000 | 2 | 1.20825D400 | 1.62567D+00
1000 | 4 T.8G538D-01 | 5.90033D-05
1000 | & 7.83253D-01 | 2.01734D-10
1000 | 16 | 7.80100D-01 | 7.80100D-01
1000 | 32 | 2.21091D-01 | 5.35774D-01

Table A.1: Maxitnum Error in p at t=1, 10, 100, 1000. ¢2ol scheme applied to unrotated box

columnm shows the maximum absolute error of the pressure at all grid points in the computational
= 3 V y . el PO ] : _ - s I 0 TG + oo
domain. The fourth column shows the energy ratio, St f’:':rrgy’ . The energy is computed as the

sum of p? + u”+ v* at each grid point. The energy ratio should he ! for all time in this problem.
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time

un

error

energy

1

1
1
1
1
1

16
32
64

4.47733D-01
4.05765D-02
1.01121D-03
1.50919D-05
2.44167D-07
4.56731D-09

2.09415D4-00
1.19465D+-00
1.12995D+00
1.06184D+00
1.02997D+400
1.01475D+00

10
10
10
10
10
10

16
32
G4

1.05676D+00
4.80494D-01
1.29059D-02
2.17390D-04
3.54538D-06
2.71791D-0%

2.15754D-01
3.67935D-01
9.99843D-01
1.01197D+00
1.00601D+00
1.00296D+400

100
100
100
100
100
100

2
4
8
16
32
(4

1.54806D-01
2.43898D-01
5.72942D-02
7.85736D-04
1.07485D-05
1.55296D-07

2.15685D-01
1.50925D-05
B.67869D-01
1.05779D+00
1.03025D400
1.01492D400

Table A.2: Maximum Error in p at t=1, 10, 100. 1000. c202 scheme applied to unrotated box

NASA/TM—1999-209182

1000
1000
1000
1000
1000

2
14
8
16
32

9.38053D-01
7.83264D-01
6.39260D-01
1.99893D-03
2.99578D-04

2.15685D-01
1.61926D-09
7.42284D-02
1.02184D+00
1.01172D+00




time

un

error

energy

1.20832D-01
2.19650D-03
1.08417D-05
4.21449D-08
1.85714D-10

1.57199D+00
1.30329D+00
1.13270D+00
1.06194D+00
1.02997D+00

9.81406D-01
3.22779D-02
1.51347D-04
6.25017D-07
2.51818D-09
1.17827D-11

1.53836D-02
1.00034D4-00
1.02631D+400
1.01243D+00
1.00602D+00
1.00296D+-00

64

8
16
32
64

2.40033D-01
1.50927D-01
6.41682D-04
2.01422D-06
7.06303D-09
2.59322D-10

1.84507D-04
7.01204D-01
1.13060D4-00
1.06266D4-00
1.03033D+00
1.01492D+-00

1000
1000

2
4
3
16

7.87774D-01
7.95076D-01
1.43518D-02
5.55534D-05

1.84508D-04
2.21515D-03
1.02138D+00
1.02563D+00

Table A.3: Maximum Error in p at t=1, 10, 100, 1000. c203 scheme

Table A.4: Maximum Error in p at t=1, 10, 100. 1000. c204 scheme
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applied to unrotated hox

time | un error energy
1 2 1.57873D-02 | 1860836400
| 4 | 6.45749D-05 | 1.30950D+00
1 g | 7.33973D-08 | 1.13273D+00
! 16 | 6.57338D-11 | 1.06194D+00
10 2 | 4.01532D-01 | 6.38565D-01
10 4 | 9.69482D-04 | 1.060161D4+00
10 8 1.04489D-06 | 1.02664D-400
10 16 1 9.82510D-10 | 1.01243D+00
100 2 | 2.47273D-01 | 3.83846D-04
100 4 | 4.84359D-03 | 1.28804D+00
100 % | 4.05413D-06 | 1.13429D400
100 16 | 2.32924D-09 | 1.06268D+00
1000 | 2 [ 7.83302D-01 | 2.74398D-08
1000 | 4 | 8.84857D-02 | 9.32911D-01
L1000 | & 1 9.96391D-05 | 1.05497D+00
1000 | 16 | 8.03457D-08 | 1.02577D+00

applied to unrotated box



Table A.5: Maximum Error in p at t=1, 10, 100, 1000. ¢265 scheme apphied to unrotated box
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time | iun error energy
1 2 1.24296D-03 | 1.92272D+00
1 4 1.21727D-06 | 1.30970D+00
10 2 4.19537D-02 | 1.11358D4-00
10 4 L.85616D-05 | 1.06212D+00
100 2 | 2.12150D-01 | 9.04443D-01
100 4 | 8.31232D-05 | 1.31289D+00
1000 | 2 | 5.01028D-01 | 4.62971D-04
1000 | 4 L.76770D-03 | 1.12454D+00




A.2 Parallel Scalability Study Data

In this section. the numerical results of the two-dimensional MESA schemes applied to the bi-
periodic open domain problem (discussed in section 7.3) are shown. The first colummn is the size
of the stencil in one-dimension. The second column represents the number of x-derivative data
elements per grid point (a MESA c205 scheme has size=2 and depth=5). The third column
represents the number of grid points per a half-wavelength. The fourth column represents the
number of parallel processing nodes in one-dimension of the mesh (this value squared is the total
number of processors used). The fifth column represents the maximum error in the pressure
across all grid points on all nodes. The sixth column represents the change in energy ratio
and should be one. The last column shows the elapsed wall-time to run the simulation to a
non-dimensional time, t=10. Ideally. the wall-time should not change as more processors are
used since the problem size is proportionately increased as discussed in section 7.3.

The data for this section was obtained on the 256 processor ORIGIN 2000 SGI system at

the Numnerical Aerodynamic Facility at. NASA Ames.
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size | depth | iun | Vnodes error energy wall time (seconds)
2 1 8 1 3.23784D-02 | 9.28744D-0 | 5.237171999993734
2 1 8 2 3.23784D-02 | 9.28744D-01 | 5.175763199978974
2 1 8 3 3.23784D-02 | 9.28744D-01 | 5.357913600048050
2 1 ] 4 3.23784D-02 | 9.28744D-01 | 5.382107199984603
2 1 8 5 3.23784D-02 | 9.28744D-01 | 5.844769600022119
2 l 8 6 3.23784D-02 | 9.28744D-01 | 6.238386400043964
2 | 8 7 3.23784D-02 | 9.28744D-01 | 8.475409599952400
2 1 8 8 3.23784D-02 | 9.28744D-01 | 11.17203040001914
2 1 8 9 3.23784D-02 | 9.28744D-01 | 33.48435039998731
2 1 8 10 3.23784D-02 | 9.28744D-01 | 54.62971999996807
2 1 8 11 3.23784D-02 | 9.28744D-01 | 62.15402240008116
2 ] 8 12 3.23784D-02 | 9.28744D-01 | 93.10773200006224
2 1 ] 13 3.23784D-02 | 9.28744D-01 | 82.79243520007003
2 | 3 14 3.23784D-02 | 9.28744D-01 | 111.2681471999967
2 1 8 15 3.23784D-02 | 9.28744D-01 | 95.57080720004160
2 1 8 16 3.23784D-02 | 9.28744D-01 | 129.0867583999643
2 3 8 1 1.62772D-08 | 1.00000D+00 | 46.70052399998531
2 3 8 2 1.62772D-08 | 1.00000D+00 | 47.32794719998492
2 3 8 3 1.62772D-08 | 1.00000D+00 | 47.22866720001912
2 3 8 4 1.62772D-08 | 1.00000D+00 | 47.01437280001119
2 3 8 5 1.62772D-08 | 1.00000D400 | 47.67966800002614
2 3 8 6 1.62772D-08 | 1.00000D+00 | 4%.90307600004598
2 3 8 7 1.62772D-08 | 1.00000D400 | 47.63437759992667
2 3 8 8 1.62772D-0%8 | 1.00000D+00 | 49.07068880001316
2 3 3 9 1.62772D-08 1 1.00000D+00 | 55.78062559996033
2 3 3 10 1.62772D-08 | 1.00000D400 | 72.05107759998646
2 3 8 11 1.62772D-08 | 1.00000D+00 | 89.01010640000459
2 3 8 12 1.62772D-08 | 1.00000D4+00 | 121.7879936000099
2 3 8 13 1.62772D-08 | 1.00000D+00 | 87.26017040002625
2 3 8 14 1.62772D-08 | 1.00000D+00 | 152.9531184000662
2 3 R 15 1.62772D-08 | 1.00000D+00 | 90.48256879998371
2 3 8 16 1.62772D-08 | 1.00000D+00 | 145.8453919999301
2 5 8 1 2.93876D-13 | 9.99923D-01 | 178.4549544000183
2 5 8 2 2.93210D-13 | 9.99991D-01 | 179.5666744000046
2 5 3 3 297873D-13 | 9.99986D-01 | 179.7554208000074
2 5 R q 3.00926D-13 | 1.00002D+00 | 178.9752455999842
2 3 8 5 2.08428D-13 | 1.00002D+00 | [84.9005968000274
2 b 8 6 2.98206D-13 | 1.00003D-+00 | 179.8433984000003
2 5 8 7 3.02092D-13 | 1.00002D+00 | 13¢.1372600001050
2 b 8 8 3.02924D-13 | 1.00001D+00 | 181.7388320000027
2 5 8 9 3.00093D-13 | 1.00002D+00 | 189.7568999999785
2 5 8 10 2.99705D-13 1 1.00002D400 | 199.6099071999779
2 ) 8 11 2.98983D-13 | 1.00002D400 | 184.5738287999993
2 B) 8 12 3.00926D-13 | 1.00001D+00 | 201.6447256000247
2 3 ¥ 13 3.00537D-13 | 1.00002D400 | 223.6260383999906
2 5 X 14 3.05034D-13 | 1.00002D+00 | 265.9614831999643
2 D 8 15 3.01925D-13 | 1.00001D4+00 | 203.8839583990943
2 bt 8 16 3.01092D-13 1 1.00002D+00 | 269.0669479999924

Table A.G: Scalability of Even Stenciled 2D Algorithms, ¢20l - ¢203. iun==x
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size | depth | iun Vnodes error energy wall time (seconds)
2 T 8 l 3 56326D-13 | 1.32862D411 [ 448.1842528000125
2 7 ] 2 3.46390D-13 | 1.14766D+11 | 450.6390879999963
2 7 8 3 3.82083D-13 | 1.13697D+11 | 457.2950864000013
2 i 8 4 3.87190D-13 | 1.13002D+11 | 451.2861640000483
2 7 & b} 4.18332D-13 | 1.10189D+11 | 456.0095087999944
2 T ] 6 3.94906D-13 | 1.15987D+11 | 453.2048775999574
2 T 8 T 4.23217D-13 | 1.14410D+11 | 455.4335280000232
2 7 8 3 4.15556D-13 | 1.13454D+11 | 454.3224334000059
2 7 ] 9 4.46976D-13 | 1.18064D411 | 458.1967968000099
2 7 8 10 4.24549D-13 | 1.13996D+11 | 474.2712151999585
2 7 8 11 4.15334D-13 | 1.I5191D411 | 460.6620823999401
2 7 ] 12 4.13669D-13 | 1.17615D+11 | 505.5624687999953
P T 8 13 4.13225D-13 | L15788D+11 | 491.8861192000331
2 T 8 14 4.07674D-13 | 1.14205D+11 | 472.0532631999813
2 7 8 15 4.13336D-13 | 1.14473D+11 | 476.7235392000293
2 7 8 16 4.32709D-13 | 1.13963D+11 | 520.7297504000599
2 9 8 1 1 190427D-12 | 2.31210D428 | 897.2121933999964
2 9 8 2 1.36260D-12 | 2.41473D428 | 904.5789711999823
2 9 & 3 1.69453D-12 | 2.50468D+28 | 908.1265935999691
2 9 8 4 1.69622D-12 | 2.20146D4+28 | 911.9188191999565
2 9 8 b 1.73284D-12 | 2.35828D+28 | 907.4723824000102
2 9 R 6 1.93617D-12 | 2.33522D+28 | 911.1470751999877
2 9 8 7 1.TO218D-12 | 2.20523D+28 | 9410.9387560000177
2 9 8 8 1.94411D-12 | 2.34538D+28 | 907.43839760001258
2 9 8 9 2.00640D-12 | 2.37756D+28 | 927.280423199990%
2 0 8 10 1.84930D-12 | 2.33301D+28 | 928.2223328000400
2 9 8 11 2.06579D-12 | 2.33085D+28 | 924.2557263999479
2 ] 8 12 1.90981D-12 | 2.30203D+28 | 928.1126103999559
2 9 3 13 2.01039D-12 | 2.36807D+23 | 927.6433960000286
2 9 8 141 2.10665D-12 | 2.33284D+28 | 948.0213632000377
2 9 8 13 1.98609D-12 | 2.35590D428 | 951.3130775999743
2 Y ] 16 2 18581D-12 | 2.35883D+28 | 976.0686616000021

Table A.7: Scalability of Even Stenciled 2D Algorithms, ¢207 - ¢209. iun==

NASA/TM—1999-209182




190

Vnodes

error

energy

wall time (seconds)

1
2

o>~ o

2.38981D-01
2.38981D-01
2.38981D-01
2.38981D-01
2.38981D-01

5.43310D-01
5.43310D-01
5.43310D-01
5.43310D-01
5.43310D-01

6.056104799965397
6.095022400026210
6.619275200006086
14.98056879999767 1
127.1477040000027

[ S N A

—
[}

2.37891D-06
2.37891D-06
2.37891D-06
2.37891D-06
2.37891D-06

9.99995D-01
9.99995D-01
9.99995D-01
9.99995D-01
9.99995D-01

51.41944319999311
51.64676319999853
52.10597440000856
54.93095439998433
139.8488951999461

Ko e DN

—
—
o

1.47837D-12
1.47915D-12
1.48059D-12
1.48004D-12
1.48348D-12

1.00000D+-00
1.00000D+00
1.00000D+00
1.00000D+00
1.00000D+00

175.6608000000124
176.3666416000342
176.2924056000193
176.5644056000165
217.2921216000104

o R N N

—_
=

2.86993D-13
2.89213D-13
2.90434D-13
2.91878D-13
2.93321D-13

1.00000D+-00
1.00000D+00
1.00000D+00
1.00000D+00
1.00000D+00

424 8665967999841
424.250788000004%
428.3839087999659
425.8961191999842
460.5442184000276

size | depth | 1un
4 0 8
4 0 8
4 0 3
4 0 8
4 0 8
4 1 8
4 1 8
4 | i
4 1 8
4 1 R
1 2 8
4 2 ]
4 P 8
4 2 ]
1 2 R
4 3 8
1 3 8
4 3 8
4 3 8
4 3 8
4 4 8
4 4 8
4 4 ]
1 4 ¥
4 1 8

o N N

[
<

3.00093D-13
2.96763D-13
3.02203D-13
3.03424D-13
3.06255D-13

1.00000D+00
1.00000D+00
1.00000D+00
1.00000D~+00
1.00000D+00

867.3569967999938
863.3986783999717
RG7.5709088000003
870.2196703999653
887.8940992000280

Table A &: Scalability of Even Stenciled 2D Algorithms, c4o0 - cdod. iun==8
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size | depth | un Vnodes error energy wall time (seconds)
3 0 8 1 3.42487D-01 | 7.68253D-01 | 1.087568799965084
3 0 3 2 3.42487D-01 | 7.68253D-01 | 1.159291199990548
] 0 8 4 3.42487D-01 | 7.68253D-01 | 1.276368800026830
3 0 8 8 3.42487D-01 | 7.68253D-01 | 15.02085120003903
3 0 ] 16 3.42487D-01 | 7.68253D-01 | 107.3357264000224
7 0 ] 1 3.09909D-04 | 9.99738D-01 | 6.79473039996810
T 0 8 2 3.09909D-04 | 9.99738D-01 | 15.834811999980641
T 0 3 4 3.09900D-04 | 9.99738D-01 | 15.91395760001615
7 0 8 8 3.09909D-04 | 9.99738D-01 | 17.38843120000092
7 0 ] 16 3.09909D-04 | 9.99738D-01 | 106.70151340010066
11 0 ] l 3.42940D-07 | 1.00000D+00 | 62.61711920000380
11 0 ] 2 3.42940D-07 | 1.00000D400 | 62.68050879996736
11 0 8 ! 3.42940D-07 | 1.00000D400 | 62.92338079999894
11 0 8 ] 3.42940D-07 | L.00000D+00 | 63.69668079999974
11 0 ] 16 3.42940D-07 | 1.00000D-00 | 109.4004799999529
15 0 3 ] 1.16869D-10 | 1.00000D+00 | 160.0692976000137
15 0 8 2 4.16870D-10 | 1.00000D4+00 | 160.0310920000193
15 0 ] 4 4.16870D-10 | 1.00000D+00 | 160.2175512000103
15 0 8 8 4.16871D-10 | 1.00000D+00 | 160.7702752000187%
15 0 8 16 4.16872D-10 | 1.00000D+00 | 190.8228232000256

Table A.9: Scalability of Odd Stenciled 2D Algorithms, 300 - ¢1500. un==y
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size | depth | iun | Vnodes error energy wall time (seconds)
2 1 16 l 4.18709D-03 | 9.90684D-01 | 33.34540320001543
2 1 16 2 4.18709D-03 | 9.90684D-01 | 36.38025839999318
2 1 16 3 4.18700D-03 | 9.90684D-01 | 37.38562880002428
2 | 16 4 4.18709D-03 | 9.90684D-01 | 36.43411120004021
2 | 16 b} 4.18709D-03 | 9.90684D-01 | 34.13949199998751
2 l 16 6 4.18709D-03 | 9.90684D-01 | 36.01643920002971
2 1 16 7 4.18709D-03 | 9.90684D-01 | 40.33804960001726
2 1 16 8 4.18709D-03 | 9.90684D-01 | 51.60536559997126
2 1 16 9 4 18709D-03 [ 9.90684D-01 | 83.10855679993983
2 ! 16 10 4. 18709D-03 | 9.90684D-01 | 83.77599599992391
2 1 16 11 4.18709D-03 | 9.90684D-01 | 61.15366560000257
2 1 16 12 4.18709D-03 | 9.90684D-01 | 111.7266711999982
2 1 16 13 4.18709D-03 | 9.90684D-01 | 108.2574559999994
2 1 16 14 4.18709D-03 | 9.90684D-01 | 146.2095783999976
2 l 16 15 4.18709D-03 | 9.90684D-01 | 110.1791632000022
2 | 16 16 4.18709D-03 | 9.90684D-01 | 158.835548800008%
2 3 16 | L.27779D-10 | 1.00000D+00 | 315.8375128000043
2 3 16 2 1.27780D-10 | 1.00000D+00 | 316.8705479999771
2 3 16 3 1.27781D-10 | 1.00000D+00 | 321.0610504000215
2 3 16 4 1.27783D-10 | 1.00000D+00 | 319.1082735999953
2 3 16 5 L27781D-10 | 1.00000D400 | 320.6734375999076
2 3 16 6 1.27782D-10 | 1.00000D400 | 319.5226610000474
2 3 16 7 L.27781D-10 | 1.00000D400 | 323.5534895999590
P 3 16 8 1.27782D-10 | 1.00000D+00 | 330.33013280003%0
2 3 16 9 1.27782D-10 | 1.00000D+400 | 330.6389639999252
2 3 16 10 1.27783D-10 | 1.00000D400 | 326.88458G4000032
2 3 16 11 1.27783D-10 [ 1.00000D+00 | 348.6675920000125
i 3 16 12 L.27783D-10 | 1.00000D400 | 395.7727319999976
2 3 16 13 L.27783D-10 | 1.00000D400 | 336.94 18080000032
2 3 16 14 1.27784D-10 | 1.00000D+00 | 346.8016951999962
2 3 16 15 L27783D-10 | 1.00000D+00 | 350.9623430000009
2 3 16 16 1.277841D-10 | 1.00000D400 | 428.8525264000054
2 ) 16 1 L45328D-13 | 2.11148D4+01 | 1228.121523190052
2 i 16 2 LA9T69D-13 | 2.00565D+01 | 1230.585302400053
2 bt LG 3 LAISTYD-13 | 2.03366D4+01 | 1235.663951 199967
2 5 16 4 1.52212D-13 | 2.01497D+01 | 1233.671822399949
2 ) 16 bt ED5H653D-13 | 2.02570D+01 | 1237.722901600064
2 ) 16 ) 1.55098D-13 | 1.99053D+01 | 1242.435900800047
2 i) 16 7 L5TT63D-13 | 2.02560D+01 | 1249.013546400005
2 5 16 8 1.55320D-13 | 2.01438D+01 | 1259.287554400042
2 B 16 9 LO48T6D-13 | 2.01459D+01 | 1266.828930400079
2 3 16 to LOSZISD-13 | 2.02172D+01 | 1275.836791 199981
2 ) 16 11 LA6H41ID-13 | 2.00356D401 | 1288, 187559200000
2 D 16 12 L36763D-13 | 2.00856D401 | 1284.793097600006
2 b 16 13 LA6430D-13 | 2.00036D+01 | 1281.903600799997
2 ) 16 14 LAT319D-13 | 2.00260D401 | 1294.26X690400000
2 5 16 15 1.60205D-13 | 1.99225D401 | 1312.503817600002
2 5 16 16 L.61204D-13 | 2.00325D401 | 1317.5346207999497

Table A.10: Scalability of Even Stenciled 2D Algoritluns. ¢2ol - ¢205, iun=16
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Vnode s

error

energy

wall time (seconds)

1

T W N

for]

-1

9

10
11
12
13
14
15
16

2.74475D-13
2.96874D-13
3.33733D-13
3.43892D-13
3.42393D-13
3.84248D-13
3.86136D-13
3.62266D-13
3.55160D-13
3.37785D-13
3.78475D-13
3.72147D-13
3.52107D-13
3.57603D-13
3.60489D-13
3.70292D-13

2.81362D+19
2.82098D+19
2.91273D+19
2.83502D419
2.0137H5D+19
2.83731D+19
2.85317D419
231157D+19
2.81470D419
2.82885D4-19
2.86809D+1Y
2.83225D419
2.85238D+19
2.84159D419
2.82847D+19
2.82556D+19

3085.163891999982
3087.646312800003
3124.434628799907
3103.314338400029
3115.198646400007
3115.035458400031
3138.926576000056
3143.350410399958
3156.271051199990
3162.656237600022
3171.337485600001
3203.977630399997
3229.511270399998
3222.951519199996
3267, 425811199995
3284.770247199999

size | depth | jun
2 7 16
2 7 16
2 7 16
2 7 16
2 T 16
2 7 16
2 T 16
2 7 16
2 7 16
2 7 16
2 7 16
2 T 16
2 7 16
2 7 16
2 7 16
2 7 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 9 16
2 0 16

1
2
3
4
D

6
7
8
9
10
11
12
13
14
15
16

2.27607D-12
2.831408D-12
2.33982D-12
2.44680D-12
2.74331D-12
2.57855D-12
2.63278D-12
2.54285D-12
2.66986D-12
2.64755D-12
2.56329D-12
2.93259D-12
2.69806D-12
2.76029D-12
6.88456D-0%
2.69351D-12

1.45926D+39
1.44775D439
1.43026 D439
1.47093D+39
1.42069D+39
1.43481 D439
1.44191D+439
1.46191 D439
1.41666D+39
1.42460D+4-39
1.42340D+39
1.42304D+39
1.44301D439
1.44698D+39
1.10447D4-40
1.45205D+39

(150.135244000005
$169.245900200102
6199.3183338399986
G247.247560799937
$292.3429 19999966
6234.565688300067
6272. 793180799927
(282.411390399910
(293.42167 1200078
6290.047822399996
6363.927698400003
$6343.667015200001
(431.174068000000
6391.318301600004
GA7T7.088828000000
(G44%.539209600000

Table A.11: Scalability of Even Stenciled 2D Algorithms. ¢207 - c209. un=16
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size | depth | iun error energy wall time (seconds)
3 0 16 1 1.01725D-01 | 9.66443D-01 | 6.877860000007786
3 0 16 2 1.01725D-01 | 9.66443D-01 | 6.99265759997069%8
3 0 16 4 L.OE725D-01 | 9.66443D-01 | 7.157536799961235
3 0 16 8 1.01725D-01 | 9.66443D-01 | 36.73547040001722
3 0 16 16 1.01725D-01 | 9.66443D-01 | 134.7845471999608
T 0 16 1 5.42150D-06 | 9.999983D-01 111.2408288000152
7 0 16 2 5.42150D-06 | 9.99998D-01 | 111.9104679999873
7 0 16 4 5.42150D-06 [ 9.99998D-01 | 110.9043407999561
T 0 L6 8 5.42150D-06 | 9.99998D-01 | 114.3528296000441
T 0 16 16 5.42150D-06 | 9.99998D-01 | 185.8904215999646
11 0 16 1 3.84612D-10 | 1.00000D+00 | 461.69587 19999529
11 0 16 2 3.84615D-10 | 1.00000D-+00 | 449.7394943999825
11 0 16 4 3.84615D-10 | 1.00000D+400 | 449.3641663999879
11 0 16 8 3.84616D-10 | 1.00000D+00 | 453.5119095999980
Il 0 6 16 NA NA NA
15 0 16 1 3.42060D-13 | 1.00000D+400 | 1170.108012800047
15 0 16 2 3.45501D-13 | 1.00000D400 | 1172.090083199961
15 0 16 4 3.46834D-13 | 1.00000D+00 | 1173.452475200000
15 0 16 8 3.46279D-13 | 1.00000D+00 | 1174.595946400019
15 0 16 16 NA NA NA

Table A 12: Scalability of Odd Stenciled 2D Algorithms, ¢300 - ¢1500. iun=16
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size | depth | iun | Vnodes error energy wall time (seconds)
4 0 16 1 3.47955D-02 | 9.24707D-01 | 39.92755999998190
4 0 16 2 3.47955D-02 | 9.24707D-01 | 40.30595120001817
4 0 16 4 3.47955D-02 | 9.24707D-01 | 40.66720399999758
4 0 16 8 3.47955D-02 | 9.24707D-01 | 57.08650400000624
4 0 16 16 3.47955D-02 | 9.24707D-01 | 151.7088871999877
4 1 16 l 1.92644D-08 | 1.00000D+00 | 350.7237432000111
4 1 16 2 1.92644D-08 1 1.00000D400 | 352.1846247999929
4 I 16 4 1.92644D-08 | 1.00000D400 | 353.2757240000064
4 1 16 8 1.92644D-08 | 1.00000D+00 | 354.4428503999952
4 l 16 16 1.92644D-08 | 1.00000D+00 | 418.2106800000183
4 2 16 1 1.36002D-13 | 1.00000D+00 | 1198.147397599998
4 2 16 2 1.37668D-13 | 1.00000D+00 | 1200.047472000006
4 2 16 4 1.38556D-13 | 1.00000D+00 | 1197.294346400013
4 2 16 8 1.39222D-13 | 1.00000D+00 | 1201.052784800006
4 2 16 16 1.42886D-13 | 1.00000D400 | 1239.151003199979
4 3 16 1 1.38001D-13 | 1.00000D+00 | 2975.2404240000 18
4 3 16 2 1.40998D-13 | 1.00000D+00 | 2904.418075199996
4 3 16 4 1.40665D-13 | 1.00000D+00 | 2909.78297H999988
4 3 16 8 1.42097D-13 | 1.00000D400 | 2912.03297360002%
4 3 16 16 1.45550D-13 | 1.00000D+00 | 2943.797023800007
4 4 16 | 1.37779D-13 T 9.99999D-01 | 6065.749917600013
4 4 16 2 1.41220D-13 | 9.99996D-01 | 6003.123391999980
4 4 16 4 1.44662D-13 | 9.99998D-01 | 5968.139892800013
4 4 16 8 1.47771D-13 | 1.00000D+00 | 5962.605800800025
4 4 16 16 1.50380D-13 | 1.00000D+00 | 6075.030083000000

Table A.13: Scalahility of Even Stenciled 2D Algorithms. c400 - cdo4. un=16

size | depth | wun nodes error energy wall time (seconds)
2 1 32 l 5.20728D-04 | 9.98327D-01 | 240.5725144000025
2 1 32 2 5.29728D-04 | 9.98827D-01 | 241.3859056000365
2 1 32 4 5.20728D-04 | 9.98827D-01 | 243.1004591999803
2 L 32 b 5.29728D-04 | 9.98827D-01 | 242.7892943999614
2 1 32 16 5.20728D-04 | 9.98827D-01 | 352.0860115999778
2 3 32 1 1.90603D-12 | 1.00000D+00 | 2459.852386399987
2 3 32 2 1.90870D-12 | 1.00000D+00 | 2463.405324799998
2 3 32 4 1.90947D-12 | 1.00000D+00 | 2455.1730503999586
2 3 32 8 1.91125D-12 | 1.00000D400 | 2520.319598400034
2 3 32 16 1.91436D-12 | 1.00000D+00 | 2626.445582399960

Table A.14: Sealability of Even Stenciled 2D Algorithms. 2ol - ¢2o3. un=:42
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Appendix B

Mathematica Source Code For
Acoustics Problems With Wall

Boundaries

This appendix contains the entire Mathematica code developed in this dissertation for solv-
ing two-dimensional acoustical wave propagation problems that include irregularly shaped wall
boundaties. To minimize the size of this document. it does not contain the code for three-
dimensional wave propagation since it is a simple extension of the two-dimensional case as
discussed in chapter 3 and it does not contain the code for the parallelized version of the two-
dimensional bi-periodic open domain problem discussed in chapter 6. In this appendix. each
section contains a separate Mathematica file for a total of five files. Each Mathematica file

contains multiple modules that together performi a particular objective.

B.1 Code Generation System Overview

A flowchart overview of the inputs, Mathematica modules, FORTRAN subroutine, and the
output is shown in figure B.1. Ounce the inputs are provided to the Mathematica modules.
they produce all the FORTRAN files necessary for solving the linearized Euler equations on

a Cartesian mesh which contains irregular boundaries. The following subsections will provide
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an overview of the input parameters, Mathematica modules, FORTRAN subroutines. and the

output.

B.1.1 Input Parameters

The input parameters are:

csize This parameter defines the size of the MESA stencil in one-dimension.
degree This parameter defines the depth of data at a grid point in the MESA.

maxmeminbytes This parameter corresponds to the maximum amount of memory available

on a computer system and is used to limit the grid resolution to prevent core dumps.

maxiuntop This parameter is the maxinum number of grid points per unit interval that will

he used in the grid resolution studies.

miniun This parameter is the minimum number of grid points per unit interval that will be

used in the grid resolution studies.

maxtime This parameter is the maximumn time that the acoustical simulation will be run to

during the grid resolution studies.
[}

readgrid This parameter is a flag used for reading a grid definition file. The grid definition
file is generated in FORTRAN for problens with many grid points. The file provides the
labelling for all grid points on the Cartesian mesh. FORTRAN is faster than Mathematica
on problems with simple geometry such as squares and circles. A more robust labelling

aleorithm mayv be written in O that could handle general eometries.
[] "V

theta This parameter defines the angle of rotation about the center of the box relative to the

fix ('artesian mesh.

listofeurves This variable is defined within the ma2d code hut is also an input to this code.
It defines the list of parametric curves that represent the geometry of the walls. In the

future. this variable will be defined by a CAD definition file.
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INPUTS

csize maxmeminbytes maxiuntop maxtime readgrid
degree listofcurves miniun theta
MATHEMATICA
tf2d.tfelp ce2d.tfelp suld ma2d

FORTRAN '

Y

tensorrdutineup. f

tensorroutinedown.f

timeadvanceup. £

timeadvancedown. f

initcond.f fillaérays

common . h
fillfillsdown.f
£fillfillgup.f
definephysicalxy.f

determinefills.f
readfills.f
main.f
periodicexdown.f
periodicexup. £
errorcalcdown. f

errorcalcup.f

factorialroutine.f

OUTPUTS

fort.iun

Figure B.1: Overview of Cade Generation System
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B.1.2 Mathematica Modules

doall2d.geom This code is the master file and should be installed first. It will read the input

parameters, compile the FORTRAN code, and save the output results.

tf2d.tfelp This code writes the FORTRAN code that performs the spatial interpolation us-
ing the Tensor Product form discussed in section 3.1.4. It creates the FORTRAN files:

tensorroutineup.f and tensorroutinedown.f.

ce2d.tfelp This code writes the FORTRAN code that performs the temporal evolution using
the Recursive Tensor form discussed in section 3.2.3. It creates the FORTRAN files:

timeadvanceup.f and timeadvancedown.f.

su2d.geom This code writes the FORTRAN code that performs the housekeeping functions
such as reading and writing files. assigning initial conditions. and calculating the error
at each time step. It creates the FORTRAN files: initcond.f. conmmon.h, fillfillsdown.f.
fillfillsup.f, definephysicalxy.f. determinefills.f. readfills.f. main.f, periodicexdown.f, peri-

odicexup.f, errorcaledown.f, errorcalcup.f, and factorialroutine.f.

ma2d This code performs all the analysis necessary to treat the wall boundary conditions in
an automated manner. It creates a single file called "fillarrays™. This array 1s a list of real
numbers that provide all the information necessary to solve the near boundary grid points
at each time step and is described in section 5.5. This file is read once by the FORTRAN

code and stored in memory as a one-dimensional array.

B.1.3 FORTRAN Subroutines

It is important to minimize memory fetch strides to minimize cache misses. One approach is
to use small arrays that can fit entirely with cache. Another approach is to minimize memory
transfers. This is accomplished in the follow way. First, the primitive variables at time n.
(p*. u". v™), are stored in a two-dimensional array A. They are then evolved to time n+1 and
stored in array B. Rather than copy array B back to array A and repeat the time advance
procedure. it is more efficient to time advance the variables in array B, (p" ! o et and

directly store them in array A.
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tensorroutineup.f This file performs the spatial interpolation using the Tensor Product form

on the data in array B.

tensorroutinedown.f This file performs the spatial interpolation using the Tensor Product

form on the data in array A.

timeadvanceup.f This file performs the Recursive-Tensor form of the timeadvance by advanc-

ing the data in array A to array B.

timeadvancedown.f This file performs the Recursive-Tensor form of the timeadvance by ad-

vancing the data in array B to array A.

initcond.f This file calculates the initial conditions for all the grid points in the computational

domain.

common.h This file contains all the FORTRAN common block data used by all the modules.

The common block data structure is used to minimize memory fetches and cache misses.

fillfillsdown.f This file. using the information from file, “fillarrays™. calculates the values of all

near boundary grid points in array A.

fillfillsup.f This file. using the information from file, “fillarrays™, calculates the values of all

near boundary grid points in array B.
definephysicalxy.f This file assigns a physical coordinate to each grid point.
determinefills.f This file determines which grid points are near boundary grid points.

readfills.f This file reads the file, “fillarrayvs”, and stores its contents in memory for faster future

retrieval.

main.f This file is the main FORTRAN code. It calls all the FORTRAN subroutines and reads

the Input and produces the output.

periodicexdown.f This file communicates the periodie boundary conditions on grid A. In the

parallel implementation, it communicates between processors.

periodicexup.f This file comnmunicates the periodic boundary conditions on grid B. In the

parallel implementation, it communicates between processors.
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errorcalcdown.f This file calculates the absolute error at each time step of the solution as

compared to the exact analytical solution on grid A.

errorcalcup.f This file calculates the absolute error at each time step of the solution as com-

pared to the exact analytical solution on grid B.

factorialroutine.f This file calculates all the factorials once at the beginning and stores them
in memory. This avoids the need to recalculate the factorials at each grid point when time

advancing using the Recursive-Tensor form.

fillarrays This file contains the list of real mumbers that completely specifies how to evaluate

all the near boundary grid points at each time step.

B.1.4 Outputs

The compiled FORTRAN code will produce output showing the error information at each time

step.

fort.iun This file will show the maximum error in the pressure at each time step as the MESA
schemes solve the linearized Euler equations. It will also show the ratio of energy change
at each time step (which should be 1. no change). This file is the final product of the code

generation system.
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B.2 Master File — doall2d.geom

In this section is file, "doall2d.geom”. It is the master file and it starts the other four files
and queries for all input parameters. It also automatically creates directories, compiles the
FORTRAN codes, and submits each executable to a batch queue on IRIS systems. Note that

this 1s a research code. it 1s constanily being modified and may indeed contain errovs.

(* m *)
(* AUTHOR: Rodger W. Dyson Jr. *)
(* DATE : March, 1999 *)
(* VERSION: Mathematica 3.0.2 *)
(* COPYRIGHT 1999 *)
(* EMPLOYER: NASA Glenn Research Center *)
(* 21000 Brookpark Rd. *)
(* Cleveland, CH *)
(F e

(* This routine will read all the MMA files and produce a complete FORTRAN codex)

(F e
Clear [Ma*',"bk", "ck™, "ds", ek ME#" gkt Wha' Mixt vixn vgxn];

Clear ["1#","mk", "nk'" "ok' “p#! Mgk' Uk’ Nek! Npxh npan vyen].

Clear [Mw*" "x*" "y*" "zx"];

csize=Input["Enter the size of the stencil in one-dimension"];
degree=Input["Enter the maximum degree for 2D problem"];
maxmeminbytes=Input["Enter the maximum amount of memory available in Mbytes."];
maxmeminbytes=maxmeminbytes*1000000;

maxiuntop=Input ["Enter the maximum iun you care to submit for batch runs."];
miniun=Input["Enter the minimum iun you care to submit for batch runs."];
maxtime=Input["Enter the maximum time you care to run the batch runs."];
readgrid=Input["Do you wish to read a grid definition file (1=Yes,0=No)"];
theta=Input["Enter the rotation angle in Radians for box "];

alpha=theta;

Print[" Generating Code for csize= ",csize," degree= ",degree];

maxiun = N[IntegerPart[Sqrt[maxmeminbytes]/Sqrt[768 + 1536 degree + 768
degree~2 111;

If[maxiun> maxiuntop, maxiun=maxiuntop] ;

(*

maxmemi=Input [“Enter the maximum memory grid size in one dimension"];

*)
maxmemi=IntegerPart[(Sqrt[2]*maxiun)+3];

maxmemj=maxmemi ;
Print["Using maximum grid dimensions of ",N[maxmemil," by ",N[maxmemjll;
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Print["And using maximum grid points per unit interval of " N[maxiunl];

Print ["Loading tf2d.tfelp"];

<< tf2d.tfelp;

Print ["Generating tensorroutine.f (Computes cp,cu,cv coefficients)"];
starttf;

Print["Loading ce2d.tfelp"];

<< ce2d.tfelp;

Print ["Generating factorialroutine.f (Solves factorial constants once)"];
Print["Generating timeadvanceroutine.f "J;

startce;

Print["Loading su2d.geom"];
<< su2d.geom;

Print["Generating the common.h file used by all subroutines"];
Print["Generating initial condition routine initcond.£"];

Print ["Generating Error Calculation subroutine errorcalcup and down.f"];
Print ["Generating periodic boundary exchange subroutine periodicex.f"];
Print["Generating main FORTRAN program (Calls all other subroutines)"];
startsu;

Print ["Loading ma2d"];
<< ma2d;

notcorrect=False;
Check[startma,notcorrect=True];

(% —mmm e oo oooSSmSsoomooomoTeee *)
(* The length of the fillarray is now known so make the common.h *)
T T Attt *)
makecommonfile;

(* ==——mmm—m——m——— e ——m——m—— oo *)

(* Make New Directory and compile file *)

(% ——mm——mmm—mm e — e ——m———— oo *)

a1g="c"<>ToString[csize]<>"o”<>ToString[degree];
rot="rot"<>ToString[N[thetall;
diun="qd"<>ToString[iunl;
dirname=alg<>"/"<>rot<>"/"<>diun;

command1="mkdir "<>ToStringlalgl;
Run[command1];

command4="cd "<>ToStringlalgl;
SetDirectorylalgl;

command1="mkdir "<>ToStringlrot];

Run [commandi] ;
command4="cd "<>ToStringlrot];
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SetDirectoryl[rot];

commandi="mkdir "<>ToString[diun];
Run[commandi1];
SetDirectory["”../.."];

command2="mv *.f '"<>dirname;
Run[command?2] ;

command3="mv *.h "<>dirname;
Run [command3] ;

command35="mv fillarrays "<>dirname;
Run[command35] ;

command4="cd "<>ToString[dirname];
SetDirectory[dirname] ;

filename="MesaProp_c"<>ToStringlcsize]<>"o"<>ToString[degreel<>".geom";
Print["Compiling Code into executable ",filename];

(*

command5="£77 -03 -r8 -co0l120 -Nn100000 -NC500 -u -o "<>filename<>" main.f
factorialroutine.f timeadvanceup.tfelp.f timeadvancedown.tfelp.f
tensorroutineup.f tensorroutinedown.f initcond.f errorcalcup.f errorcalcdown.f
periodicexup.f periodicexdown.f";

*)

(*

command5="£77 -03 -r8 -col120 -Nn100000 -NC500 -u -o "<>filename<>" main.f
factorialroutine.f timeadvanceup.tfelp.f timeadvancedown.tfelp.f
tensorroutineup.f tensorroutinedown.f initcond.f errorcalcup.f errorcalcdown.f
readfills.f fillfillsup.f fillfillsdown.f determinefills.f rotate.f";

*)

command5="£77 -03 -r8 -c0l120 -Nni100000 -NC500 -u -o "<>filename<>'" main.f
factorialroutine.f timeadvanceup.tfelp.f timeadvancedown.tfelp.f
tensorroutineup.f tensorroutinedown.f initcond.f errorcalcup.f

errorcalcdown.f readfills.f fillfillsup.f fillfillsdown.f determinefills.f
definephysicalxy.f";

Run[command5];

(*

e *)
(* Create the Input Files and run the codes as batch jobs *)
(F e *)
Dol

(* Create Input File *)
ifilename="inputfile"<>ToString[2 iunct];
stmp=0OpenWrite["inputfiletmp"];

Write[stmp,2~iunct];

If[EvenQlcsize],
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lamtmp=0.2,lamtmp=0.4];
Write[stmp,lamtmp];

(*

cttmp=N[1000 * 2~iunct / lamtmpl;

*)

cttmp=N[maxtime * 2~ iunct / lamtmp];
write[stmp,cttmp];

(*

ecttmp=N[cttmp/100];

*)

ecttmp=N[10 * 2~iunct / lamtmp];
Write[stmp,ecttmpl;

wavenumberx=1;

wavenumbery=1;
Write[stmp,wavenumberx];
Wwrite[stmp,wavenumbery];
Close[stmpl;

Run["rm "<> ifilenamel;

Run["sed —e 's/\"//g’ inputfiletmp >> "<>ifilename];
Run["rm inputfiletmp"];

(* Create the shell script *)

stmp=OpenWrite["shellscripttmp"];

Write[stmp,"#! /bin/csh"];

Write[stmp,"#BSUB -N -u xxdyson@gauss.1erc.nasa.gov"];
Write[stmp,"#BSUB -R irix"];

Writel[stmp,"cd /u/xxdyson/golden2D/" ,dirname];

(*

writel[stmp,"cd ",ToString[Directory[1]1];

*)

command2="./"<>filename<>" < ./inputfile"<>ToString[2”iunctl;
Wwrite[stmp,command2];

Close[stmp];

Run["rm shellscript"];

Run["sed -e ’'s/\"//g’ shellscripttmp >> shellscript"];
Run{"rm shellscripttmp"];

command3="bsub -q long -R irix -J"<>filename<>ToString[2~iunct]<>" -u
xxdyson@gauss.lerc.nasa.gov < shellscript";

Print [command3];

Run[command3] ;
,{iunct,N[IntegerPart[Log[miniun]/Log[Z]]],N[IntegerPart[Log[maxiun]/Log[2]]]}];
SetDirectory[".."];

Clear[Mak', b, mek™ "Ex" Mgk “ha' ik MjEt Mkxt];

Clear [M14", m', Mok, "pk'", gk’ TR skt rx" tukt vkt
Clear[”w*","x*“,”y*","z*",cp,cu,cv,cfc,datalist];

(*

,{degree,0,1}]

,{csize,2,2}];

NASA/TM—1999-209182



206

*)
(* Solve[{mem == 3 * (degree+1)-2 * (2*iuntmp)-2 * 64},iuntmp] bytes *)

(*

commandi="sed -e ’'s/\"//g’ inputfiletmp >> inputfile";
command2=command1<>ToString[2~iunct];

*)

*)

If[Not[notcorrect],

Print["All systems seem non-singular"];
initializetimestepping;
dothetimestepping;

Print["**********************************************************************"];

Print["Something was wrong in startma!!!!"];
Print["**********************************************************************"];

Print["Message List=",$MessageList]
1;

NASA/TM—1999-209182



207

B.3 Tensor Form of Spatial Interpolation File — tf2d.tfelp

This Mathematica code will produce the FORTRAN code that calculates the spatial interpolant
at each stencil using the Tensor Product form described in section 3.1.4.

<< LinearAlgebra‘MatrixManipulation‘;

Tt *)
(* This procedure will compute the spatial coefficients using John’s Tensor *)
(* form of evaluation. *)
(F —mm e o m oo —mmm—me e *)

starttf:=(

(k =————m e *)
(* Initialize and Get Problem Specifications *)
(% ————— e e *)

initproc;

(F —mm e m e *)
(* Determine the polynomial interpolant for the x-direction *)
(F ——— e —— e *)

getintformx;

(¥ ————— e m e ——— e *)
(* Compute the S data which is located at x=0 on each strata *)
(¥ ————m e m e *)

computes;

(F e e *)
(* Determine the polynomial interpolant for the y-direction *)
(F =—— e mm e *)
getintformy;

(% ————— e *)
(* Compute the spatial interpolant coefficients *)
(% =——— e e *)

computea;

(F —mmmm oo —m oo *)

(* Generate the FORTRAN subroutine solving the cp,cu, and cv coefficients *)

(K e e —e— oo *)

makecompleteroutine;

(k =m— e *)
(* Test the interpolant by evaluating at all data points *)
(% == mm e *)
(*

testall;

*)
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);

initproc:=(
Clear[a,s,xc,yc,xf,yf];
Run["rm tensorroutine.f"];
Run["rm tensorroutinetmp.f"];

If[Not[ValueQ[csizel],

csize=Input ["Enter the size of the stencil in one-dimension"];

1;

If[Not[ValueQ[degreell,

degree=Input["Enter the maximum degree for 2D problem"];

1

(F —— *)
(* Make a list of all the data elements at a single grid point *)
(% ——— *)
datalist={};

Dol

Dol

AppendTo[datalist,fc(dx,dy,1i,j]]

,{dx,0,degree}]

,{dy,0,degree}];

(F e ——————————— *)
(* Calculate the spatial interpolant form to be used for all directions #*)
(F —m e *)
(* s *)
(* Determine the number of data elements in the x direction *)
R e e —— *)

Cases[datalist,fc[_;o,i,j]];

interpolantorder=csize* Count[datalist,fc[_,0,i,j]1];

);

(% ——— e ———————— *)
(* Determine one-dimensional interpolant form in x direction *)
(% —mm e ——— *)

getintformx:=(
xf[x_]:=Sum[xc[i] x~i,{i,0,interpolantorder-1}];
variablelist=CoefficientList [xf[x],x];

evenvariablelist={};
oddvariablelist={};
Do{AppendTo[evenvariablelist,xc[i]],{1,0, interpolantorder-1,2}];
Do[AppendTo[oddvariablelist, xc[il],{i,1,interpolantorder-1,2}];
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(* Find the values of the coefficients ¢ for c2 stencil *)

(* = e e *)
If[EvenQcsize],

(F e oo oo ———ee e *)
(* Solve the 1D interpolant by splitting into two independent sets of equation%*)
(K e oo oo s——— e *)
evenequationlist={};

Dol

Dol

(*

AppendTo[equationlist, (D[xf[x],{x,dx}] /. {x->(ptct h) - h/2}) ==
fcldx,dy,ptct,jll;

AppendTo[equationlist, (D[xf[x],{x,dx}] /. {x->-(ptct h) + h/2}) ==
fcldx,dy,1-ptct,jll;

*)

AppendTo[evenequationlist, (D[xf[x],{x,dx}] /. {x->(ptct h) -
h/2})+(DIxf[x],{x,dx}] /. {x->-(ptct h) + h/2}) == fc[dx,dy,ptct,j]
+fc[dx,dy,1-ptct,jl1];

If[dx+i<=degree,

AppendTo[evenequationlist, (DIxf[x],{x,dx+1}] /. {x->(ptct h) -
h/23)-(D{xf[x],{x,dx+1}] /. {x->-(ptct h) + h/2}) == fc[dx+1,dy,ptct,]]
~fc[dx+1,dy,1-ptet,j11]1;

,{ptct,1,csize/2}]

,{dx,0,degree,2}];

oddequationlist={};

Dol

Dol

AppendTo[oddequationlist, (D[xf[x],{x,dx}] /. {x->(ptct h) -
h/23)-(D[xf[x],{x,dx}] /. {x->-(ptct h) + h/2}) == fcldx,dy,ptct,]]
-fcldx,dy,1-ptct,jll;

If[dx+1<=degree,

AppendTo[oddequationlist, (D[xf[x],{x,dx+1}] /. {x->(ptct h) -
h/23)+(DIxf[x],{x,dx+1}] /. {x->-(ptct h) + h/2}) == fcldx+1,dy,ptct,]]
+fc[dx+1,dy,1-ptct,j11];

,{ptct,1,csize/2}]

,{dx,0,degree,2}];

(k ———mmrr e *)
(* Solve the even derivatives *)
(% ————— e *)

matrixrhs=LinearEquationsToMatrices[evenequationlist,evenvariablelist];
matrix=matrixrhs[[1]];

rhs=matrixrhs[[2]];
xvector=Collect[LinearSolvelmatrix,rhs],fcl_,_,_,_11;
Clear[aside,bsidel;

makeequal[aside_,bside_]:= aside=bside;

pairs = {evenvariablelist, xvector};

Apply{makeequal,pairs];
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(% ——— e *)
(* Solve the odd derivatives x*)
(% ———mmmmm e *)

matrixrhs=LinearEquationsToMatrices{oddequationlist,oddvariablelist];

matrix=matrixrhs[[1]];

rhs=matrixrhs[[2]];
xvector=Collect[LinearSolve[matrix,rhs],fcl_,_,_,_]11;:
Clear[aside,bside];

makeequal [aside_,bside_]:= aside=bside;

pairs = {oddvariablelist, xvector};

Apply [makeequal,pairs];

1;

If[0ddQ[csize],

(F e e
one group *)

(F —

(* This system will never get too Big, I think! so do as

equationlist={};
Dol
Dol

AppendTo[equationlist, (D[xf[x],{x,dx}] /. {x->(ptct) h}) == fcldx,dy,ptct,jl];

,{ptct,-IntegerPart[csize/2],IntegerPart[csize/2]}]
,{dx,0,degree}];

matrixrhs=LinearEquationsToMatrices[equationlist,variablelist];

matrix=matrixrhs[[1]];

rhs=matrixrhs[[2]];
xvector=Collect[LinearSolvel[matrix,rhs],fcl_,_,_,_11;
Clear[aside,bside];

makeequal [aside_,bside_]:= aside=bside;

pairs = {variablelist, xvector};
Apply[makeequal,pairs];

1;

(*
fcldx_,dy_,i_,j_1:=D[£f[x,y],{x,dx},{y,dy})/ . {x—>i,y->j}
fcldx_,dy_,i_,j_3:=D[f[x,y],{x,dx},{y,dy}1/.{x->i,y—>j}

*)

)

(F

(* Now have the form of the interpolant in one dimension

*)

(* the c[i] coefficient represents the ith derivative of the function being *)

(* interpolated.

(k —— e ———————
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(k ————— *)
(* Loop through all the y terms *)
(¥ —————m e *)
(* Compute all the S terms for x dimension *)
(¥ ———— e *)

computes:=(
numberofcterms=Length[variablelist]-1;
If[EvenQ[csize],

(* Works

Dol

Dol

Dol

s[dy,iindex, jl=Collect[xc[iindex],fc[_,_,_,_11;
,{iindex,0,numberofcterms}]
,{dy,0,degreel}]
,{j,1-(csize/2),csize/2}];

*)

(*k ———mmmr e *)
(* Create FORTRAN Do loops *)
(¥ ————— e *)
(% ——mm——m *)

(* Define the fc *)

(% ——mm—mmm *)

(*

Dol

Do[Dol

xnot="";

Dol

xnot=xnot<>"x";

,{xct,1,dx}];

ynot="";

Dol

ynot=ynot<>"y";

,{yct,1,dy}1;

xnot="";
xnot=ToString[dx]<>"x";
ynot="";
ynot=ToString[dyl<>"y";
dnotation=xnot<>ynot;

fcdnotation="fc"<>xnot<>ynot;
fcldx,dy,i,jl=fcdnotation[gridi+i,gridj+jl
fcdnotation="fctmp";
fcldx,dy,i,jl=fcdnotation[gridi+i,gridj+j,dx,dy]
,{dx,0,degreel}]

,{dy,0,degreel}]

,{i,1-(csize/2),csize/2}];

*)
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fcdnotation="fctmp";
fcldx_,dy_,i_,j_]:=fcdnotation[gridi+i,gridj+j,dx,dy];

Clear{dy, jl;

stmp=OpenWrite["tensorroutinetmp.f" ,FormatType->FortranForm] ;
Write[stmp’"c****************** Doing the Sy terms *******************c"];
Write[stmp," do dy=0, degree"];

(*

Dol

*)

Write[stmp," do j=1-(",csize/2,"),",csize/2];

Dol

Write[stmp," *,sldy,iindex,j],"=",xc[iindex] 1;
,{iindex,0,numberofcterms}];

Write[stmp," end do"];

Write[stmp," end do"];

(*

,{dy,0,degreel}];

*)

Close[stmp];

Clear[fc];

Run["sed -e ’s/\"//g’ tensorroutinetmp.f >> tensorroutine.f"];
Run["rm tensorroutinetmp.f"];

1;

If[0ddQ[csize],

(* WORKS

Do[

Dol

Dol

s[dy,iindex, jl=xc[iindex]
,{iindex,0,numberofcterms’}]

,{dy,0,degreel}]
,{j,-IntegerPart(csize/2],IntegerPart[csize/2]}];
*)

(¢ ——————— *)
(* Create FORTRAN Do loops *)
(% ————m e *)
(% ——————mm *)

(* Define the fc *)

(% ———— e *)

(*

Dol

Do[Dol[

xnot="";

Dol

xnot=xnot<>"x";

,{xct,1,dx}];

ynot="";
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Dol

ynot=ynot<>"y";
,{yct,1,dy}3;

xnot="";
xnot=ToString[dx]<>"x";
ynot="";

ynot=ToString[dyl<>"y";

dnotation=xnot<>ynot;
fcdnotation="fc"<>dnotation;
fc[dx,dy,i,j]=fcdnotation[gridi+i,gridj+j]
,{dx,0,degree}]

,{dy,0,degree}]
,{i,—IntegerPart[csize/2],IntegerPart[csize/2]}];
*)

fcdnotation="fctmp";
fc[dx_,dy_,i_,j_]:=fcdnotation[gridi+i,gridj+j,dx,dy];

Clear[dy,jl;
stmp=DpenWrite["tensorroutinetmp.f”,FormatType—>FortranForm];
(*

Dol

*)

wIite[stmp,"c************************** Doing the Sy terms
ook ok ok ok kR ok Rk kR KRRk Rk C ']

Write[stmp," do dy=0, degree"];

Writelstmp," do j=",—IntegerPart[csize/Z],“,",IntegerPart[csize/2]];
Dol

Write[stmp," ",s[dy,iindex,j],"=",xc[iindex] 1;
,{iindex,0,numberofcterms}];

Write[stmp," end do"J;

Write[stmp," end do"];

(*

,{dy,0,degree}];

*)

Close[stmp];

Clear[fc];

Run["sed -e ’'s/\"//g’ tensorroutinetmp.f >> tensorroutine.f"];
Run["rm tensorroutinetmp.f"];

3

)i

(% =——mm——mm e —m——— oo *)

(* Now compute the spatial coefficients *)

(k) ——m——mmmmm—mm————— e e——— oo *)

(% ———mm—m——mm e m e mm e m oo oo oo osmomooeoooos *)
(* Compute the yc coefficients for use in the y direction *)
(% —mmmmmmmmmm—m— e oo ———— o oo S ooSoomomm oo *)
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getintformy:=(
yfly_J:=Sumlyc[i] y~i,{i,0,interpolantorder-1}];
variablelist=CoefficientList[yf[y],y];

evenvariablelist={};
oddvariablelist={};
Do[AppendTo[evenvariablelist,yc[i]],{i,O,interpolantorder—l,2}];
Do[AppendTo[oddvariablelist, yclil]l,{i,1,interpolantorder-1,2}];

(F m *)

(* Find the values of the coefficients ¢ for c2 stencil *)

(¥ *)

If[EvenQ[csize],

(A e *)
(* Solve the 1D interpolant by splitting into two independent sets of equation#*)
(e e *)
evenequationlist={};

Dol

Dol

AppendTo[evenequationlist, (D[yf[yl,{y,dy}] /. {y->(ptct h) -
h/2H)+(DLy£ly],{y,dy}] /. {y->-(ptct h) + h/2}) == fc[dx,dy,i,ptct]
+fcldx,dy,i,1-ptct]];

If[dy+i<=degree,

AppendTo[evenequationlist, (DLyf[y],{y,dy+1}] /. {y->(ptct h) -
h/2})-(Dlyflyl,{y,dy+1}] /. {y->-(ptct h) + h/2}) == fcldx,dy+1,i,ptct]
-fcldx,dy+1,i,1-ptct]]];

,{ptct,1,csize/2}]

,{dy,0,degree,2}];

oddequationlist={};

Dol

Dol

AppendTo[oddequationlist, (D[yf[yl,{y,dy}] /. {y->(ptct h) -
h/2})-(Dly£lyl,{y,dy}] /. {y->-(ptct h) + h/2}) == fc[dx,dy,i,ptct]
-fcldx,dy,i,1-ptct]l];

If[dy+i<=degree,

AppendTo[oddequationlist, (D[yf[y],{y,dy+1}] /. {y->(ptct h) -
h/2H)+(DLyfly],{y.dy+1}] /. {y->-(ptct h) + h/2}) == fcldx,dy+1,1i,ptct]
+fcldx,dy+1,i,1-ptct]]];

,{ptct,1,csize/2}]

,{dy,0,degree, 2}];

I e — *)
(* Solve the even derivatives *)
(F —m o *)
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matrixrhs=LinearEquationsToMatrices[evenequationlist,evenvariablelist];
matrix=matrixrhs[[1]];

rhs=matrixrhs[[21];

cvector=Collect [LinearSolve[matrix,rhs],fcl_,_,_,_11;
Clear[aside,bside];

makeequal[aside_,bside_]:= aside=bside;

pairs = {evenvariablelist, xvector};

Apply [makeequal,pairs];

(¥ ——————mm—m—————— e *)
(* Solve the odd derivatives *)
(¥ ——~—————mmm—o— *)

matrixrhs=LinearEquationsToMatrices[oddequationlist,oddvariablelist];
matrix=matrixrhs[[1]1];

rhs=matrixrhs[[2]];
xvector=Collect[LinearSolve[matrix,rhs],fc[_,_,_,_]];
Clear[aside,bside];

makeequal[aside_,bside_]:= aside=bside;

pairs = {oddvariablelist, xvector};

Apply [makeequal,pairs];

1;

1f[0ddQlcsize],

equationlist={};

Dol

Dol

AppendTo[equationlist,(Dlyfly],{y,dy}] /. {y->(ptct) h}) == fcldx,dy,i,ptctll;
,{ptct,—IntegerPart[csize/2],IntegerPart[csize/2]}]

,{dy,0,degreel}];

matrixrhs=LinearEquationsToMatrices[equationlist,variablelist];
matrix=matrixrhs[[1]];

rhs=matrixrhs[[2]];
xvector=Collect[LinearSolve[matrix,rhs],fc[_,_,_,_]];
Clear([aside,bside];

makeequal[aside_,bside_]:= aside=bside;

pairs = {variablelist, xvector};

Apply (makeequal,pairs];

1;
);
(K mmmmmmmmmm e m oSS ooomoTSomomTTTEmTETTe *)
(* Now the c coefficients represent the y interpolator spatial coeff. *)
(* Substitute the fc with the s data *)
(F mmmm e oo CmoSoSoSommomommomTTmTTTTTT *)

(* Compute Spatial Coefficients *)
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computea:=(

(* WORKS

Dol

Dol

Clear [newdx,newdy,newi,newjl;

afiindex,jindex]=yc[jindex] /. {fc[newdx:_,newdy:_,newi:_,newj:_] ->
s[newdy,newdx,newj] } /. {dx->iindex}

,{jindex,0,numberofcterms}]

,{iindex,0,numberofcterms}];

*)

(% — e *)
(* Create FORTRAN Do loops *)
(% ——— e~ *)

Clear[dy,j,s];
stmp=OpenWrite["tensorroutinetmp.f",FormatType->FortranForm] ;
Write[stmp,"ch***xx*x**xx++* Doing the fectmp coefficients skkskkkkkkkkkkinkc];

Write[stmp," do iindex=0,'",numberofcterms];
Dol
Write[stmp," ",cffcliindex, jindex,0],"=",yc[jindex] /.

{fc[newdx:_,newdy:_,newi:_,newj:_] -> s[newdy,newdx,newj] } /. {dx->iindex}];
,{jindex,0,numberofcterms}];

Write[stmp," end do"];

Close[stmp];

Run["sed -e ’s/\"//g’ tensorroutinetmp.f >> tensorroutine.f"]:

Run["rm tensorroutinetmp.f"];

)5

(F mm e *)
(* This will read tensoroutine.f, and duplicate three times with P,u,v in place *)
(* of fc *)
(F m o e *)
makecompleteroutine:=(

(¥ —m—m *)
(* Make the three copies *)

T T —— *)

Run("rm tensorroutinetmpup.f"];
stmp=0penAppend["tensorroutinetmpup.f",FormatType—>FortranForm];
WIite[stmp,"c**************************************c"];
Write[stmp,"c* Solving the p spatial coefficients *xc"];
Write[SEmp, "cHkkskkimnihikikkkkkdkhiikihkkkkkbrrihkc] ;
Close[stmp];

Run["sed -e ’s/ffc/p/g’ -e ’s/fctmp/p/g’ tensorroutine.f >>
tensorroutinetmpup.f"];
stmp=0penAppend["tensorroutinetmpup.f",FormatType—>FortranForm];
Write[stmp,"c**************************************C"];
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Write[stmp,"c* Solving the u spatial coefficients *c"];
Write[stmp,"c**************************************c"];
Close[stmpl;

Run["sed -e 's/ffc/u/g’ -e ’s/fctmp/u/g’ temsorroutine.f >>
tensorroutinetmpup.f"];
stmp=0penAppend["tensorroutinetmpup.f",FormatType—>FortranForm];
Write[stmp,"c**************************************c"];
Write[stmp,"c* Solving the v spatial coefficients *c"];
Write[stmp,"c**************************************c“];
Close[stmpl;

Run["sed -e ’s/ffc/v/g’ -e ’s/fctmp/v/g’ temnsorroutine.f >>
tensorroutinetmpup.f"];

(¥ ——————m—mm——m e *)
(* Make the down version *)
(% ———————————— *)

Run["rm tensorroutinetmpdown.f"];
stmp=DpenAppend["tensorroutinetmpdown.f",FormatType—>FortranForm];
Write[stmp,"c**************************************c"];
Writelstmp,"c* Solving the p spatial coefficients *c"];
Write[stmp,"c**************************************c"];
Close[stmp];

Run[“sed -e ’s/ffc/p/g’ —e ’s/fctmp/np/g’ temsorroutine.f >>
tensorroutinetmpdown.f"];
stmp=0penAppend[”tensorroutinetmpdown.f“,FormatType—>FortranForm];
Write[stmp,"c**************************************c“];
Write[stmp,"c* Solving the u spatial coefficients *c"];
Write[Stmp,"c**************************************c”];
Close[stmpl;

Run["sed -e 's/ffc/u/g’ -e ’s/fctmp/nu/g’ tensorroutine.f >>
tensorroutinetmpdown.f"];
stmp=0penAppend["tensorroutinetmpdown.f",FormatType—>FortranForm];
Write[stmp,"c**************************************c"];
Write[stmp,"c* Solving the v spatial coefficients *c"];
Write[stmp,"c**************************************c”];
Closel[stmp];

Run["sed -e ’s/ffc/v/g’ -e ’s/fctmp/nv/g’ tensorroutine.f >>
tensorroutinetmpdown.f"];

Run["rm tensorroutine.f"];

stmp=0penAppend["tensorroutinetmpup.f",FormatType—>FortranForm];

Writelstmp,” end"];

Close[stmp];
stmp=DpenAppend[“tensorroutinetmpdown.f",FormatType—>FortranForm];
Write[stmp," end"];

Closelstmp];

stmp=0penWrite[“tensorroutinelup.f",FormatType->FortranForm];
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Write{stmp," subroutine tensorup"];

Write[stmp," include ’common.h’"];

Close[stmp];
stmp=0penWrite["tensorroutineldown.f",FormatType—)FortranForm];
Write[stmp," subroutine tensordown'];

Write[stmp," include ’common.h’"];

Close[stmp];

Run["sed -e ’s/\"//g’ tensorroutineiup.f > tensorroutineup.f"];
Run["sed -e ’'s/\"//g’ tensorroutinetmpup.f >> tensorroutineup.f"];
Run["sed -e ’s/\"//g’ tensorroutineidown.f > tensorroutinedown.f"]:
Run[*sed -e ’s/\"//g’ tensorroutinetmpdown.f >> temsorroutinedown.f"];

Run["rm tensorroutinelup.f"];
Run["rm tensorroutineidown.f"];
Run["rm tensorroutinetmpup.f"];
Run["rm tensorroutinetmpdown.f"];

)5
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B.4 Temporal Evolution Using Recursive Tensor Form File
— ce2d.tfelp

This code will create the FORTRAN code for computing the temporal evolution of each grid
point at each time step using the method discussed in section 3.2.3.

(% —————————————= *)
(* calculateelp:=( *)
(¥ ——————m *)

startce:=(
Run["rm timeadvanceroutine.f"];
Run["rm shiftmultiplyroutine.f"];

(¥ —mm——mmmm e oo——oomsmmso oo oo *)
(* Get input data and setup interpolating polynomial forms *)
(* =m—mm—m e m e m e s —Csoo——oooSmomTomomooT *)

initproc;

(* —==————mmm—mm—m————— oo ——m— oo oo ms oo x)
(* Set linearized euler equations equal to zero *)
(% —==—mmmmm—mmm e m— oo e mm— oo oo omsmso oo *)

setupequations;

(h —mmmmmmmm e m e —m oo —s—mmoo——osse s *)
(* Express time coefficients as space coefficients *)

(k —mmm—mm—m—mm e —m—mm oo —oo——ooomooooee e *)

determineelp;

(% ———m—mm—m o *)
(* Write Factorial Routine *)

(¥ —————mm—mm o *)

makefactorialfile;

(# ——mmmm e oSS C oSS oo SSosSooomooooT *)
(* Rearrange exact propagator time advance solutions as a linear *)
(* combination of cp,cu,cv spatial coefficients *)
(# —mmmm e m e oo oo o S oo ooommmooo e *)
(*

collectterms;

*)

(# —mmmm eSS oSS oS STSSooemmosoTmmmmTmT *)
(* Find the constant equation for each c¢p,cu,and cv, and write to FORTRAN *)
Tt *)
(*

getkvalues;

*)

(# e e m oSS oT oSS SoomoooSTTmTm T *)

(* Generate the time advance shift multiply routine and write to FORTRAN *)
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(*
shiftmultiply;
*)

(% e *)
(* To avoid copying memory, make an up and down time advance *)
(¥ m *)

makedownanduptimeadvance;
)

initproc:=(
Clear[cp,cu,cv,pp,uu,vv,p,u,v];

If[Not[ValueQ[csizel],

csize = Input["Enter the stencil size of the problem: "];

1;

If[Not[ValueQ[degreel],

degree = Input["Enter the maximum degree of the stencil data: "] ;
1;

maxind = (csizex*degree) + (csize-1);

Collect[DIplx,y,t],x]/.{x->0,y->0},{cpl_,_,_1,cul_,_,_J,cvl_,_,_1}]1;
(F m e e *)
(* Form the interpolating polynomial with unknowns cp,cu,cvli,jl *)
(F e *)

plx_,y_,t_):=Sumlep(i,j,k] x"i y~j t°k, {j,0,maxind},{i,0,maxind},{k,0, (csize
degree)+ (csize(degree+2)-2)-(i+j)}];

ulx_,y_,t_J:=Sumlculi,j,k] x"i y°j t°k, {j,0,maxind},{i,0,maxind},{k,0, (csize
degree) + (csize(degree+2)-2)-(i+j)}];

vix_,y_,t_J:=Sumlcv(i,j,k] x"i y~j t"k, {j,0,maxind},{i,0,maxind},{k,0, (csize
degree) + (csize(degree+2)-2)-(i+j)}];

)

setupequations:=(

(¥ e *)
(* Linearized Euler Equations *)
(F — e *)

equationi= Expand[D{p[x,y,t],t] + mx D[p[i,y,t],x] + my Dlplx,y,t]l,y] +
Dlulx,y,t],x] + Dlvlx,y,t],y] 1;

(%

equation345= Expand[D[D[p(x,y,t],t] + mx D[plx,y,t],x] + my Diplx,y,t]l,y] +
Dlulx,y,t],x] + Dlvix,y,tl,yl,{x,3},{y,.3},{t,5}]

1
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*)
equation2= Expand [D[ulx,y,t],t] + mx Dlulx,y,t],x] + my Dlulx,y,t],y] +
plplx,y,t],x] J;

equation3= Expand [D[v[x,y,t],t] + mx Dlv[x,y,t],x] + my Dlv[x,y,tl,yl +
Dlplx,y,tl,y]l 1;

)

determineelp:=(
Clearla,b,c];

(F —mmmmm eSS SoS oo ToSSooooooTomTEmmmTTmTTTT

(* These conditions are derived directly from LEE are required for exact
(* propagators

(% —mm e mmm e oo oSS SSoSoomToToomTETEmmmmTTmTTTT

ncp[a_,b_,c_]:=(-(b+1)(my cpla,b+1,c-1] + cvla,b+1,c-11) ~(a+1) (mx
cplatt,b,c-1] + cufa+1,b,c-11))/c;

ncula_,b_,c_]:=(-(b+1) my cula,b+1,c-1] - (a+1) ( mx cula+1,b,c-11 +
cpla+1l,b,c-1] ))/c;

nevla_,b_,c_J:=(-(b+1) ( my cvla,b+1,c-1] + cpla,b+i,c-11 ) -(a+1) mx
cvla+i,b,c-11)/¢;

Run["rm timeadvance.tfelp.f"];
stmp=0penWrite{"timeadvance.tfelptmp.f",FormatType—>FortranForm];
Write[stmp," subroutine timeadvance'];

Writel[stmp," include ’'common.h’"];

Write[stmp,”c***************************************************************c"];

Write[stmp,"c* Calculate the cp[_,_,_>0],cu[_,_,_>0],cv[_,_,_>0] terms now *c'"J;
Write[stmp,"c***************************************************************c"];

Writelstmp,"” do kindex=1, 2*maxind "J;

Wwrite[stmp," do jindex=0, maxind "J;

(*

Write[stmp," do iindex=0, 2*maxind-kindex-jindex "];

*)

Write[stmp," do iindex=0, min(maxind,2*maxind—kindex—jindex) "],
Write[stmp," cp(iindex,jindex,kindex)=",ncp[iindex,jindex,kindex]];
Write[stmp," cu(iindex,jindex,kindex)=“,ncu[iindex,jindex,kindex]];
Writel[stmp," cv(iindex,jindex,kindex)=",ncv[iindex,jindex,kindex]];
Writelstmp," end do "1;

Writelstmp," end do "];

Write[stmp," end do "J;

(*

Do Dol

xnot="";

xnot=ToString[dx]<>"x";

ynot="";

ynot=ToStringldyl<>"y";
dnotation=xnot<>ynot;
*)

(*
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Write[stmp,"ck*xxkx******+** Begin time advance using Horner Form
*kAkk Rk kRRRAC"] ;

Write[stmp," do dy=0,degree"];

Write[stmp," do dx=0,degree"];

Write[stmp," psum=0.0"];

Write[stmp," usum=0.0"];

Write[stmp," vsum=0.0"];

Write[stmp," do kindex=0,",2*maxind];

Write[stmp," psum=psum+fac(dx) * fac(dy) *
physicaltstep**kindex*cp(dx,dy,kindex)"];

Write[stmp," enddo "];

Write[stmp," do kindex=0,",2*maxind];

Write[stmp," usum=usum+fac(dx) * fac(dy) #*
physicaltstep**kindex*cu(dx,dy,kindex)"];

Write[stmp," enddo "J;

Write[stmp," do kindex=0,",2*maxind];

Write[stmp," vsum=vsum+fac(dx) * fac(dy) =*
physicaltstep**kindex*cv(dx,dy,kindex)"];

Write[stmp," enddo "];

Write[stmp," np(gridi+stagger,gridj+stagger,dx,dy)=psum"];
Write[stmp," nu(gridi+stagger,gridj+stagger,dx,dy)=usum”];
Write[stmp," nv(gridi+stagger,gridj+stagger,dx,dy)=vsum"];
Write(stmp," end do"];

Write[stmp," end do"];

w:[ite[stmp,"c****************** Done advancing time **************c"];

*)

Write[stmp,"c**********++++ Begin time advance using Horner Form

FddokAok Rk Rk RRC"]

Write[stmp," do dy=0,degree"];
Write[stmp," do dx=0,degree"];
Write[stmp," factterm=fac(dx)*fac(dy) "];
Write(stmp," psum=0.0"];

Write[stmp," usum=0.0"];

Write[stmp," vsum=0.0"];

Write[stmp," do kindex=",2*maxind,",1,-1"];

Write[stmp," psum=physicaltstep*((factterm * cp(dx,dy,kindex))+psum)"];
Write[stmp," enddo "];

Write[stmp," do kindex=",2*maxind,",1,-1"];

Write[stmp," usum=physicaltstep*((factterm * cu(dx,dy,kindex))+usum)"];

Write[stmp,"

Write[stmp," do kindex=",2+*maxind,",1,-1"];
Write[stmp," vsum=physicaltstep*((factterm * cv(dx,dy,kindex))+vsum)"];
Write[stmp," enddo "]1;

enddo "J;
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Write[stmp,"
np(gridi+stagger,gridj+stagger,dx,dy)=psum+(cp(dx,dy,O)*factterm)"];
Write[stmp,"
nu(gridi+stagger,gridj+stagger,dx,dy)=usum+(cu(dx,dy,0)*factterm)"];
Write[stmp,"
nv(gridi+stagger,gridj+stagger,dx,dy)=vsum+(cv(dx,dy,O)*factterm)"];
Write[stmp," end do"];

Write[stmp," end do"];

Write[stmp,"c****************** Done advancing time **************c"];
(*

,{dx,0,degreel}]

,{dy,0,degree}];

*)

Write[stmp," end"];

Closelstmp];

Run["sed -e ’s/\"//g’ timeadvance.tfelptmp.f >> timeadvance.tfelp.f"l;
Run["rm timeadvance.tfelptmp.f"];

)

(F mmmmm e *)
(* Create Factorial FORTRAN subroutine to reduce multiplies *)
(F —mmm e *)

makefactorialfile:=(
Run["rm factorialroutine.f"];
stmp=0penWrite[“factorialroutinetmp.f",FormatType—>FortranForm];

Write[stmp," subroutine computefactorials'];
Write[stmp," include ’common.h’"];

Dol

Write[stmp," fac(",ct,")=",ct!];
,{ct,0,degree}];

Write[stmp," end"];

Close[stmpl;

Run["sed -e ’s/\"//g’ factorialroutinetmp.f >> factorialroutine.f"];
Run["rm factorialroutinetmp.f"];

)i

shiftmultiply:=(

(K —m— e e — e *)
(* Create the shift multiply for time advancing with minimal multiplies *)
(*# and data storage, keep memory together using multiple loops *)
(F ——mmm e *)
stmp=0penWrite[”shiftmultiplyroutinetmp.f“,FormatType->FortranForm];
Write[stmp," subroutine shiftmultiply"];

Writelstmp," include ’‘common.h’"];

(*

Write[stmp," do dy=0,degree"];

Write[stmp," do dx=0,degree"];

*)
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Write[stmp,"c*********************** Advancing ",dx,"x",dy,"y"," terms

dokkkkokkkkkkkkkc']

Write[stmp,"
Write[stmp,"
Write[stmp,"

Write[stmp,"
Write[stmp,"
Write[stmp,"

psum=0"];
usum=0"];
vsum=0"] ;

do jindex=0,maxind-",dy];
do iindex=0,maxind-",dx];

mfac=(fac(iindex+",dx,")*fac(jindex+",dy,"))/(fac(iindex)*fac(jindex))"];

write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"

Write[stmp,"
Write[stmp,"
Write[stmp,"

mfacp=cp(iindex+",dx,",","jindex+",dy,") * mfac"];
psum=psum+(mfacp*ppkp(iindex,jindex))"];
usum=usum+(mfacp*uukp(iindex, jindex))"];
vsum=vsum+(mfacp*vvkp(iindex, jindex))"];

end do"J;

end do"];

do jindex=0,maxind-",dy];
do iindex=0,maxind-",dx];

mfac=(fac(iindex+",dx,")*fac(jindex+",dy,"))/(fac(iindex)*fac(jindex))"];

Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"

Write[stmp,"
Write[stmp,"
Write[stmp,"

mfacu=cu(iindex+",dx,",","jindex+",dy,") * mfac"];
psum=psum+ (mfacu*ppku(iindex, jindex))"];
usum=usum+(mfacu*uuku(iindex, jindex))"];
vsum=vsum+(mfacu*vvku(iindex, jindex))"];

end do"];

end do"];

do jindex=0,maxind-",dy];
do iindex=0,maxind-",dx];

mfac=(fac(iindex+",dx,")*fac(jindex+",dy,"))/(fac(iindex)*fac(jindex))"];

Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
write{stmp,"

xnot="";

mfacv=cv(iindex+",dx,",”,"jindex+",dy,") * mfac"];
psum=psum+(mfacv*ppkv(iindex, jindex))"];
usum=usum+(mfacv*uukv(iindex, jindex))"];
vsum=vsum+(mfacv+vvkv(iindex, jindex))"];

end do'];

end do"];

xnot=ToString[dx]<>"x";

ynotzull ;

ynot=ToStringldyl<>"y";
dnotation=xnot<>ynot;

Write[stmp,"
Write[stmp,"
Write[stmp,"

np",dnotation,"(gridi+stagger,gridj+stagger)=psun"];
nu",dnotation,"(gridi+stagger,gridj+stagger)=usum"];
nv",dnotation,"(gridi+stagger,gridj+stagger)=vsum"];

Write[stmp, " ck**kkxkikkrkkx*k*x* Done advancing ",dnotation," terms
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sk kR ok ook kR Rk Rk kR kR 1]

(*
Write[stmp," end do"J;
Write[stmp," end do"];
*)

,{dx,0,degree}]
,{dy,0,degree}];

Write[stmp," end"];
Close[stmp];

Run{"sed -e ’s/\"//g’ shiftmultiplyroutinetmp.f >> shiftmultiplyroutine.f"];
Run["rm shiftmultiplyroutinetmp.f"];

Do[Dol

psum=0;
usum=0;
vsum=0;
Dol
Dol

mfac=(fac[iindex+dx]*fac[jindex+dy]l)/(fac[iindex]*fac[jindex]);

psum = psum+(mfac*ppkpliindex,jindex] * cpliindex+dx, jindex+dyl) ;
psum = psum+(mfac*ppkuliindex,jindex] * culiindex+dx, jindex+dyl) ;
psum = psum+(mfac*ppkv[iindex,jindex] * cvliindex+dx, jindex+dyl) ;

usum = usum+(mfac*uukpliindex,jindex] * cpliindex+dx,jindex+dyl) ;
usum = usum+{(mfac*uukul[iindex,jindex] * culiindex+dx, jindex+dy]) ;
usum = usum+(mfac*uukv{iindex, jindex] * cvliindex+dx, jindex+dyl) ;

vsum = vsum+(mfac*vvkpliindex,jindex] * cpliindex+dx,jindex+dyl) ;
vsum = vsum+(mfac*vvku[iindex,jindex] * culiindex+dx,jindex+dyl) ;
vsum = vsum+(mfac*vvkv[iindex,jindex] * cv[iindex+dx, jindex+dyl) ;
,{iindex,0,maxind-dx}]

,{jindex,O,maxind-dy}];

pldx,dyl=psum;

uldx,dyl=usum;

v[dx,dy]}=vsum;

,{dx,0,degree}];

,{dy,0,degree}];
);
fac[x_J:=x!';

makeequal:=(
Do[Dol[
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cpliindex, jindex,0]=cpliindex, jindex];
culiindex, jindex,0]=culiindex, jindex];
cvliindex, jindex,0J=cv[iindex, jindex];
,{iindex,0,maxind}]
,{jindex,0,maxind}];

)

makedownanduptimeadvance:=(

Run("rm timeadvanceup.tfelp.f"];

Run["sed -e ’s/timeadvance/timeadvanceup/g’ timeadvance.tfelp.f >>
timeadvanceup.tfelp.f"];

Run["rm timeadvancedown.tfelp.f"];

Run["sed -e ’s/timeadvance/timeadvancedown/g’ -e ’s/np/p/g’ —-e ’s/mu/u/g’ -e
’s/nv/v/g’ timeadvance.tfelp.f >> timeadvancedown.tfelp.f"];

Run["rm timeadvance.tfelp.f"];

);
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B.5 Create All The Administrative Files — su2d.geom

This code will create the FORTRAN code that computes the initial conditions, checks the errors
at each time step. reads the fill file described in section 5.5, and constructs the FORTRAN
common data area.

startsu:=(

(* This is done separately after ma2d so that length of fillarrays is known
makecommonfile;

*)

makeinitcondfile;
makeerrorcalcupfile;
makeerrorcalcdownfile;
makemainfile;

(*

makeperiodicexfile;

*)

makefillfillsfile;
makereadfillsfile;

(* Put it directly in code
makerotatefile;

*)

makedeterminefillsfile;
makedefinephysicalxyfile;

)i

(F e mm e m oSS s *)
(* This procedure creates the common file used by all subroutines *)
(* Instead of using parameters, this permits easier inlining later *)
(* and minimizes memory moves to maxmimize floating point performance *)
T i *)

makecommonfile:=(

Print["Removing common.h"];

Run["rm common.h"];

Print[“Generating common.h"];
stmp=DpenWrite["commontmp.h",FormatType—>FortranForm];

Write[stmp," integer maxind,maxi,maxj,memcost“];
Write[stmp," real pi,alpha"];

Write[stmp," parameter (maxind=",maxind,")"];
Write[stmp," common maxi,maxj "I;

Write[stmp," integer maxmemi,maxmemj,maxlength "3,
Write[stmp," parameter (maxmemi=",maxmemi,")"];
Write[stmp," parameter (maxmemj=",maxmemj,")"];
Write[stmp," parameter (maxlength='",maxlength,")"];
Write[stmp," parameter (alpha=",N[alphal,")"];

(*

Write[stmp," parameter (maxi='",maxi,")}"];
Write[stmp," parameter (maxj=",maxj,")"];

*)

Write[stmp," parameter (pi=",N[Pi,30],")"];
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Write[stmp," integer stepn, stagger "];

Write[stmp," common /intstep/ stepn, stagger "I;

Write[stmp," integer idx,fillct,ipct,iuct,ivet "];

Write[stmp," real h,lam,mx,my,physicalt,wx,wy,physicaltstep,iun"];
Write[stmp," common /stepinfo/ h,lam,mx,my,physicalt,wx,wy "];
Write[stmp," common /stepinfo/ physicaltstep, iun "];

Write[stmp," real maxp,minp,llierr,maxperr,perr,initialenergy"];
Write[stmp," real currentenergy, physicalnx,physicalny,rotatex,rotatey "J;
Write[stmp," common /errorinfo/ maxp,minp,llerr,maxperr,perr "];
Write[stmp," common /errorinfo/ initialenergy, currentenergy "];
Write[stmp," real cp(0:maxind+2,0:maxind+2,0:2*maxind)"];
Write[stmp," real cu(0:maxind+2,0:maxind+2,0:2*maxind)"];
Write[stmp," real cv(0:maxind+2,0:maxind+2,0:2*maxind)"];
Write[stmp," common /coef/ cp,cu,cv"];

Write[stmp," real factterm "];

Write[stmp," real fac(0:",degree,")"];

Write[stmp," common fac "J];

Write[stmp," integer dx,dy,degree,iindex,jindex,kindex,csize"];
Write[stmp," parameter (degree=",degree,")"];

Write[stmp," parameter (csize=" 6 csize,")"];

WIite[stmp," real psum,usum,vsum,mfac,mfacp,mfacu,mfacv'];
Write[stmp," common psum,usum,vsum,mfac,mfacp,mfacu,mfacv "];
Write[stmp," integer gridi,gridj"];

Write[stmp," common /gridcoords/ gridi,gridj"];

Write[stmp," integer lgridi,lgridj "I1;

Write[stmp," real
physicalx(-maxmemi:maxmemi),physicaly(-maxmemj:maxmem;j)"];

Write[stmp," common /physicalxy/ physicalx,physicaly "];
Write[stmp," integer errorsteps, numberofnsteps "];

Write[stmp," integer ioffset,joffset,i,j "];

Write[stmp," real totalperr"];

Write{stmp," real
s(O:”,degree,",”,"O:",numberofcterms,",",—IntegerPart[csize/2],":",IntegerPart[c
size/2],")"];

Write[stmp," common errorsteps,
numberofnsteps,ioffset, joffset,i, j,totalperr,s"];

Write[stmp,” integer lengthoffillarrays,numberofp,numberofu,numberofv "];
Write[stmp," integer £illi,fillj,filldx,filldy,lci,lcj,lcdx,lcdy"];
Write[stmp," integer numberoffillpts "J;

Write[stmp," real lccoef,onelongarray(maxlength) "1;
Write[stmp," common /fillstuff/

lengthoffillarrays,numberoffillpts,onelongarray"];

Write[stmp," real
p(-maxmemi:maxmemi, -maxmemj :maxmemj,0:degree,0:degree)"];
Write[stmp," real
u(-maxmemi:maxmemi,-maxmemj:maxmenj,0:degree,0:degree)"];
Write[stmp," real
v(-maxmemi:maxmemi,-maxmemj:maxmemj,0:degree,0:degree)"];
Write[stmp," common /dataongrid/ p,u,v"];
Write[stmp," real
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np(—maxmemi:maxmemi,—maxmemj:maxmemj,O:degree,O:degree)”];
Write[stmp," real
nu(-maxmemi:maxmemi, -maxmemj : maxmemj,0:degree,0:degree)"];
Write[stmp," real
nv(-maxmemi :maxmemi,-maxmemj : maxmemj,0:degree,0:degree)"];

Writelstmp," common /dataongrid/ np,nu,nv"];

Write[stmp," integer interior (-maxmenmi:maxmemi,-maxmemj:maxmemj) "];
Write[stmp," common interior "J;

Close[stmp];

Run["sed —e ’s/\"//g’ -e ’s/\\\\//g’ commontmp.h >> common.h"];
Run["rm commontmp.h"];

)

makeinitcondfile:=(

Print["Removing initcond.f"];

Run["rm initcond.f"];

Print["Generating initial condition routine initcond.f"];
Clear([p,u,v,x,y,t];

(*

(¥ =mmmm e *)
(* Analytical solution to bi-periodic LEE problem *)
(% ——mm—m—m e m e m e — e ——— oo *)

plx_,y_,t_]:=Cos[Sqrtlwx 2+wy~2] pi tI*Sin[wx pi (x - mx t)]*Sin[wy
)]s

u[x_,y_,t_]:=—(wx/Sqrt[wx‘2+wy‘2])*Sin[Sqrt[wx“2+wy‘2] pi tl*Cos[wx
t)]#Sinlwy pi (y - my t)];
v[x_,y_,t_]:=—(wy/Sqrt[wx‘2+wy‘2])*Sin[Sqrt[wx‘2+wy‘2] pi t1*Sin[wx
t)]*Coslwy pi (y - my t)1;

*)

(% ———— e oo *)
(* Analytical solution to rotated box LEE problem *)
(¥ =—r——mm e —m o *)

plx_,y_,t_1:=-Cos[Sqrt[wx~2+wy~2] Pi t] Cos[wx Pi (x- mx t)] Cos[wy
©];

u[x_,y_,t_]:=—(wx/Sqrt[wx“2+wy“2])*Sin[Sqrt[wx‘2+wy‘2] Pi t]*Sin[wx
t)]*Coslwy Pi (y - my t)];
v[x_,y_,t_]:=—(wy/Sqrt[wx‘2+wy’2])*Sin[Sqrt[wx‘2+wy‘2] Pi t]*Cos[wx
t)]*Sinlwy Pi (y - my t)];

If[Not[ValueQ[degreell,
degree=Input["Enter the degree"];
1;

If[Not[ValueQ[maxmemil],
maxmemi=Input["Enter the maximum x coordinate'];
maxmemj=maxmemi ;

1;
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stmp=OpenWrite["initcondtmp.f" ,FormatType->FortranForm] ;
Write[stmp," subroutine initcond"];
Write[stmp," include ’common.h’'"];

Write[stmp, "ch*¥iskkikikiikiokihrkskiokdokdkddkkikkhec'] ;

Write[stmp,"c Defining physical coordinates c"1;
Write[stmp, "cHk sk kikiokkkkok ko koktokkkkkdokkdopkrkkkc'] ;

Write[stmp," write(iun,*) ’Rotated Box LEE Analytical Solution :'"];
mx:=0;

my:=0;

Write[stmp," write(iun,*) ’p[x,y’t]: ",p[x,y,t] R
Write[stmp," write(iun,*) ‘ulx,y,tl= ",ulx,y,t],"’"];
Write[stmp," write(iun,*) ’v[x,y,t]l= ",vIx,y,t],"’"];
Write[stmp,"c do lgridi=-",maxmemi,"," ,maxmemi] ;
Write[stmp,"c physicalx(lgridi)= 1gridi * h"];
Write[stmp,"c end do"];

Write[stmp,"c do lgridj=-",maxmemj,"," ,maxmemj];
Write[stmp,"¢c physicaly(lgridj)= lgridj * h"];
Write[stmp,"c end do"];

Write[stmp, "ckskksknskakonkkskkokak ko dok ok okdkokokosk ok kb ook ok ok koK okok ok ok dokk "] 5

Write[stmp,"c* For the tensor form of time advance, do this once *c¢"]:
Write[Stmp, " ckimikkskskikkokdkdkddokkkdokdokdskokokkodok Rk kk Rk kR kk]

Write[stmp," do iindex=0,",maxind+2];
Write[stmp," do jindex=0,",maxind+2];
Write[stmp," do kindex=0,',maxind#*2];
Write[stmp," cp(iindex,jindex,kindex)=0.0 "];
Write[stmp," cu(iindex,jindex,kindex)=0.0 "];
Write[stmp," cv(iindex, jindex,kindex)=0.0 "];
Write[stmp," end do "];

Write[stmp," end do "J;

Write[stmp," end do "];

Write[stmp," initialenergy=0. "];

Do[Do[

dnotation=ToString[dx]<>"x"<>ToStringldyl<>"y";
Write[stmp,"c****** Define the initial conditions for the ",dnotation," terms
*dkkkc"] ;

Write[stmp," do lgridj=-maxmemj,maxmemj"];
Write[stmp," do lgridi=-maxmemi,maxmemj"];
Write[stmp," if

((interior(lgridi,lgridj).eq.1).or.{(interior(lgridi,lgridj).eq.2)) then"];
Write[stmp,'c
physicalnx=rotatex(physicalx(lgridi),physicaly(lgridj),-alpha)"l;
Write[stmp,"c
physicalny=rotatey(physicalx(lgridi),physicaly(lgridj),-alpha)"];

Write[stmp," physicalnx=(cos(-alpha) * physicalx(lgridi)) + (sin(-alpha)
* physicaly(lgridj))"l;
Write[stmp," physicalny=(-sin(-alpha) * physicalx(lgridi)) +

(cos(~alpha) * physicaly(lgridj))"]l;
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Write(stmp,"
p(lgridi,lgridj,",dx,",",dy,")=",D[p[x,y,t],{x,dx},{y,dy}]/.{x—>physica1nx,y—>ph
ysicalny,t->0}];

Write[stmp,"
u(lgridi,lgridj,",dx,",",dy,")=",Dlulx,y,t],{x,dx},{y,dy}]/.{x->physicalnx,y->ph
ysicalny,t->0}];

Write[stmp,"

v(lgridi,lgridj,",dx,",",dy,")=",Dlv[x,y,t],{x,dx},{y,dy}}/. {x->physicalnx,y->ph
ysicalny,t->0}];

Write[stmp," else"];

(*

Write[stmp," p(lgridi,lgridj,dx,dy)=0.0"];
Writel[stmp," u(lgridi,lgridj,dx,dy)=0.0"1;
Writel[stmp," v(lgridi,lgridj,dx,dy)=0.0"]1;

*)

Wwrite[stmp,” p(lgridi,lgridj,"”,dx,",",dy,")=0.0"];
Write[stmp," u(lgridi,lgridj,“,dx,”,",dy,")=0.0”];
Write[stmp," v(lgridi,lgridj,",dx,”,",dy,")=0.0“];
Write[stmp," endif"];

Write[stmp," end do"];

Write[stmp," end do"];

,{dx,0,degree}]
,{dy,0,degreel}];

(# —————m oo *)
(* Calculate initial energy using generalized form *)
(¥ —m——m—m e *)
(*

Writelstmp," do dy=0,degree"];

Write[stmp," do dx=0,degree"];

*)

Write[stmp," do dy=0,0"];

Write[stmp," do dx=0,0"];

Write[stmp," do lgridj=-maxmemj,maxmemj"];
Write[stmp," do lgridi=-maxmemi,maxmemi"];
Write[stmp," if

((interior(lgridi,lgridj).eq.1).or.(interior(lgridi,lgridj).eq.2)) then"];

Write(stmp," initialenergy=initialenergy+(p(lgridi,lgridj,dx,dy)**2 "1
Write[stmp," -+u(lgridi,lgridj,dx,dy)**2"];
Writelstmp," -+v(lgridi,lgridj,dx,dy)**2)"];
Write[stmp," endif"];

Write(stmp," end do"];

Write[stmp," end do"J;

Write[stmp," end do"];

Write[stmp," end do"];

Write[stmp," initialenergy=initialenergy*h*h "]
Writel[stmp," end"];

Close[stmpl;

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ initcondtmp.f >> initcond.f"];
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Run["rm initcondtmp.f"];

);

makeerrorcalcdownfile:=(

Print["Removing errorcalcdown.f"];

Run["rm errorcalcdown.f"];

Print["Generating error calculation routine errorcalcdown.f"];
Clear[p,u,v];

(*

(% mmmmmm e ———— *)
(* Analytical solution to bi-periodic LEE problem *)
(* = o *)

plx_,y_,t_J:=Cos[Sqrtlwx~2+wy~2] pi t]*Sinlwx pi (x - mx t)]*Sinlwy pi (y - my

t)];

ulx_,y_,t_J:=-(wx/Sqrtwx~2+wy~2] )*Sin[Sqrt [wx"2+wy~2] pi t]*Cos[wx
t)1*Sinfwy pi (y - my t)1;
vix_,y_,t_]:=-(wy/Sqrt[wx"2+wy~2] )*Sin[Sqrt [wx"2+wy~2] pi tI*Sin[wx
t)]*Coslwy pi (y - my t)];

*)

(F ——mmmmm o *)
(* Analytical solution to rotated box LEE problem *)
I et *)

plx_,y_,t_1:=-Cos[Sqrt[wx"2+wy~2] Pi t] Cos[wx Pi (x- mx t)] Coslwy
©];

ulx_,y_,t_J:=-(wx/Sqrtlwx~2+wy~2])*Sin[Sqrt [wx"2+wy~2] Pi t1*Sin[wx
t)]*Cos{wy Pi (y - my t)];
vix_,y_,t_]:=-(wy/Sqrtlwx"2+wy~2])*Sin[Sqrt [wx~2+wy~2] Pi t]*Cos[wx
t)]1*Sinfwy Pi (y - my t)1;

stmp=OpenWrite["errorcalctmp.f" ,FormatType->FortranForm];

Write[stmp," subroutine errorcalcdown"];
Write[stmp," include ’common.h’"];

(*

Write[stmp," real rotatex"];

Write[stmp," real rotatey"];

*)

Write[stmp," integer bigi,bigj "1;
Write[stmp," real eratio "];

Write[stmp," totalperr=0.0 "];
Write[stmp," maxperr=0.0 "1;

Write[stmp," maxp=0.0 "1;

Write[stmp," minp=0.0 "];

Write[stmp," currentenergy=0.0"];
Write[stmp," do lgridj=-maxmemj,maxmemj"];
Write[stmp," do lgridi=-maxmemi,maxmemi"];
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if

((interior(lgridi,lgridj).eq.i).or.(interior(lgridi,lgridj).eq.2)) then"];

Write[stmp,'"c

physicalnx=rotatex(physicalx(1gridi),physicaly(lgridj),—alpha) "1

Write[stmp,'c

physicalny=rotatey(physicalx(lgridi),physicaly(lgridj),—alpha) "1;

Writel[stmp,"
*

physicalnx=(cos(-alpha) * physicalx(lgridi)) + (sin(-alpha)

physicaly(lgridj))"];

Writelstmp,"

physicalny=(-sin(-alpha) * physicalx(lgridi)) +

(cos(-alpha) * physicaly(lgridj))"];

Write[stmp,"

if (p(lgridi,lgridj,0,0).gt.maxp)

maxp=p(lgridi,lgridj,0,0)"];

Writel[stmp,"

if (p(lgridi,lgridj,0,0).1t.minp)

minp=p(lgridi,lgridj,0,0)"];

Write[stmp,"

perr=abs(p(1gridi,lgridj,0,0)—",p[x,y,t]/.{x—>physicalnx,y—>physica1ny,t—>physic

alt},")"];
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
(*
Write[stmp,"
Write[stmp,"
*)
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Writel[stmp,"
Writelstmp,"
Write[stmp,"

Write[stmp,"

Write[stmp,"
Writelstmp,"

Write[stmp,"
Write(stmp,"”
Write(stmp,

if (perr.gt.maxperr) then "J1;
bigi=lgridi "];

bigj=lgridj "1;

maxperr=perr "1;

endif "1;
totalperr=totalperr+perr"];

do dy=0,degree "1;
do dx=0,degree "1;

do dy=0,0 "1;
do dx=0,0 "J;
currentenergy=currentenergy+(p(lgridi,lgridj,dx,dy)**2 "1

-+u(lgridi,lgridj,dx,dy)**2"];
-+v(lgridi,lgridj,dx,dy)**2)"];

end do"];
end do"];

endif"];

end do"];
end do"];

llerr=totalperr*h*h "1;
eratio = currentenergy*h*h/initialenergy "J;

" write(*,900) stepn+1, physicalt, maxperr, llerr, maxp, minp,eratio"];

Write[stmp,"
Write[stmp,

write(6,*) bigi,bigj "J;
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" write(iun,900) stepn+1, physicalt, maxperr, lierr, maxp, minp,eratio”];
Write[stmp,” 900 format(1x,i5,1x,1p,4d12.5,1x,2d12.5)"];

Write[stmp," end"];

Close[stmp];

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ errorcalctmp.f >> errorcalcdown.f"];
Run["rm errorcalctmp.f"];

)

makeerrorcalcupfile:=(

Print ["Removing errorcalcup.f"];

Run["rm errorcalcup.f"];

Print[“Generating error calculation routine errorcalcup.f"];
Clear[p,u,v];

(*

(F — o *)
(* Analytical solution to bi-periodic LEE problem *)
(F o *)

plx_,y_,t_]:=Cos[sqrtlwx~2+wy~2] pi t]1*Sinlwx pi (x - mx t)1*Sinlwy pi (y - my
t)]1;

ulx_,y_,t_J:=-(wx/SqrtLwx"2+wy~2])*Sin[Sqrt [wx"2+wy~2] pi t)*Cos [wx pi (x - mx
t)1*Sinlwy pi (y - my t)];
vix_,y_,t_1:=-(wy/Sqrtlwx"2+wy-2])*Sin[Sqrt [wx"2+wy~2] pi t1*Sin[wx pi (x - mx
t)1*Coslwy pi (y - my t)];

*)

(* mm *)
(* Analytical solution to rotated box LEE problem *)
(* e o *)

plx_,y_,t_1:=-Cos[Sqrt[wx"2+wy~2] Pi t] Cos[wx Pi (x- mx t)] Cos[wy Pi (y-my
t)]1;

ulx_,y_,t_]:=-(wx/Sqrt[wx"2+wy~2])*Sin[Sqrt [wx"2+wy"2] Pi t]*Sin[wx Pi (x - mx
t)]*Coslwy Pi (y - my t)];
vix_,y_,t_J:=-(wy/Sqrtlwx"2+wy~2])*Sin[Sqrt [wx"2+wy~2] Pi t]*Cos[wx Pi (x - mx
t)1*Sinlwy Pi (y - my t)];

stmp=OpenWrite["errorcalctmp.f" ,FormatType->FortranForm] ;

Write[stmp," subroutine errorcalcup"];
Write[stmp," include ’common.h’"];

(*

Write[stmp," real rotatex"];
Write[stmp," real rotatey"];

*)

Write[stmp," integer bigi,bigj "];
Write[stmp," real eratio "1;
Write[stmp," totalperr=0.0 "J;
Write[stmp," maxperr=0.0 "];
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Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
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maxp=0.0 "1;

minp=0.0 "1;

currentenergy=0.0"];

do lgridj=—maxmemj+stagger,maxmemj+stagger"];
do 1gridi=-maxmemi+stagger,maxmemi+stagger"];
if

((interior(lgridi,lgridj).eq.i).or.(interior(lgridi,lgridj).eq.2)) then"]1;

Write[stmp,'c

physicalnx=rotatex(physicalx(lgridi),physicaly(lgridj),—alpha) "];

Write[stmp,"c

physicalny=rotatey(physicalx(lgridi),physicaly(lgridj),—alpha) "1,

Write(stmp,"
*

physicalnx=(cos(-alpha) * physicalx(lgridi)) + (sin(-alpha)

physicaly(lgridj))"];

Write[stmp,"

physicalny=(-sin(-alpha) * physicalx(lgridi)) +

(cos(-alpha) * physicaly(lgridj))"];

Write[stmp,"

if (np(lgridi,lgridj,0,0).gt.maxp)

maxp=np(lgridi,lgridj,0,0)"];

Write[stmp,"

if (np(lgridi,lgridj,0,0).lt.minp)

minp=np(lgridi,lgridj,0,0)"];

Write[stmp,"

perr=abs(np(lgridi,lgridj,0,0)-",p[x,y,t]/.{x—)physicalnx,y—>physica1ny,t->physi

calt},")"];
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
(*
Wwrite[stmp,"
Write[stmp,"
*)
Write(stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,"
Writel[stmp,"

Write[stmp,"
Write[stmp,"
Writel[stmp,"
Write[stmp,"
Write[stmp,"
Write[stmp,

if (perr.gt.maxperr) then "]1;
bigi=lgridi "1;

bigj=lgridj "1;

maxperr=perr "];

endif "1;
totalperr=totalperr+perr"];

do dy=0,degree"];
do dx=0,degree"];

do dy=0,0"];
do dx=0,0"];
currentenergy=currentenergy+(np(lgridi,lgridj,dx,dy)**2 *]1;

-+nu(lgridi,lgridj,dx,dy)**2"];
-+nv(lgridi,lgridj,dx,dy)**2)"];

end do"];
end do"];

endif"];

end do"];

end do"];

lierr=totalperr*h*h "1;

eratio = currentenergy*h*h/initialenergy "1;

" write(*,900) stepn, physicalt, maxperr, llerr, maxp, minp,eratio”];

Writelstmp,"

write(6,*) bigi,bigj "I;
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Write[stmp,
" write(iun,900) stepn, physicalt, maxperr, llerr, maxp, minp,eratio"];
Write[stmp,"” 900 format(1x,i5,ix,1p,4d12.5,1x,2d12.5)"];

Write[stmp," end"];

Closel[stmpl;

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ errorcalctmp.f >> errorcalcup.f"];
Run["rm errorcalctmp.f"];

);

makemainfile:=(

Print["Removing main.f"];

Run["rm main.f"];

Print["Generating main execution routine main.f"];
If[Not[ValueQ[maxmemi]],

maxmemi=Input [“Enter the maximum memory grid size in one dimension"];
maxmemj=maxmemi] ;

stmp=OpenWrite["maintmp.f" ,FormatType->FortranForm];

Write[stmp," program main "J;

Write[stmp," include ’common.h’"];

Write[stmp,"c**** Enter problem parameters *kx*xc"];

Write[stmp," write(6,*) ’Enter the number of i grid cells per unit
interval’ "];

Write[stmp," read(5,*) iun"];

Write[stmp," if (iun+",csize,".gt.maxmemi) then "J;

Write[stmp," write(6,*) ’'Need to allocate more memory ’ "J;
Write[stmp," stop "J1;

Write[stmp," endif"];

Write[stmp,'c maxi=maxmemi-2"];

Write[stmp,"c maxj=maxmemj-2"];

Write[stmp," h=1.0/dble(iun)"];

Write[stmp," write(6,*) ’Enter lambda’ "];

Write[stmp," read(5,*) lam"];

Write[stmp," physicaltstep=lam/dble(iun) "];

Write[stmp," write(6,*) ’Enter # of time steps ’ "];

Write[stmp," read(5,*) numberofnsteps "J;

Write[stmp," write(6,%) ’Enter # of time steps between error output ’ "];
Write[stmp," read(5,*) errorsteps "J;

Write[stmp," if (mod(csize,2).eq.0) then "];

Write[stmp," if (mod(errorsteps+1,2).eq.0) then "J;

Write[stmp," write(*,*) ’'Staggered grid requires even errorsteps’ "J];
Write[stmp," errorsteps=errorsteps+1 "];

Write[stmp," write(*,*) ’Changed it to :’,errorsteps "J;
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Write[stmp,"c* Loop through all the derivatives of ",varlist[[ct]]," *c"];
Write[stmp,"c* At a single location *c"];
Write[stmp,"C**************************************************************c"];
Write[stmp," do filldy=0, degree "];

Write[stmp," do filldx=0, degree "1;

Write[stmp," numberofp=onelongarray(idx) "J1;
Write[stmp," idx=idx+1"];

Write[stmp," numberofu=onelongarray(idx) "J;
Writelstmp," idx=idx+1"];

Write[stmp," numberofv=onelongarray(idx) "J;
Write[stmp," idx=idx+1"];

Write[stmp," psum=0.0"1;

Write[stmp," do ipct=1,numberofp "];

Write[stmp," lci = onelongarray(idx) "J;

Write[stmp," idx=idx+1"];

Writel[stmp," lcj = onelongarray(idx) "1;

Write[stmp," idx=idx+1"];

Write[stmp," lcdx = onelongarray(idx) "];

Write[stmp," idx=idx+1"];

Write[stmp," lcdy = onelongarray(idx) "J];

Write[stmp," idx=idx+1"];

Write[stmp," lccoef = onelongarray(idx) "1;

Write(stmp," idx=idx+1"];

Writelstmp," psum=psum+(1lccoef*pp(lci,lcj,ledx,ledy))"];
Write[stmp," if ((filli.eq.4).and.(fillj.eq.-2)) then "1;
Write[stmp," write(6,*)
’np’,lccoef,lci,lcj,lcdx,lcdy,np(lci,lcj,1cdx,lcdy)”];
Write[stmp," endif"];

Write[stmp," end do "J;

Write[stmp," usum=0.0"1;

Writelstmp," do iuct=1,numberofu "J;

Writelstmp," lci = onelongarray(idx) "1;

Write[stmp," idx=idx+1"];

Write[stmp," lcj = onelongarray(idx) "1;

Write[stmp," idx=idx+1"];

Write[stmp," lcdx = onelongarray(idx) "1;

Write[stmp," idx=idx+1"];

Write[stmp," lcdy = onelongarray(idx) "I;

Write[stmp," idx=idx+1"];

Write[stmp," lccoef = onelongarray(idx) "1;

Writel[stmp," idx=idx+1"];

Write[stmp," nsum=usum+(lccoef*uu(lci,lcj,ledx,ledy))"];
Write[stmp," if ((£filli.eq.4).and.(fillj.eq.~2)) then "1;
Write[stmp," write(6,*)
’nu’,lccoef,lci,lcj,lcdx,lcdy,nu(lci,lcj,1cdx,1cdy)"];
Write[stmp," endif"];

Write[stmp," end do "];

Write[stmp," vsum=0.0"];

Write[stmp," do ivct=1,numberofv "1;

Write[stmp," lci = onelongarray(idx) "1;

Write[stmp," idx=idx+1"];
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Write[stmp,"
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Write[stmp,"
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lcj = onelongarray(idx) "];

idx=idx+1"];

lcdx = onelongarray(idx) "1;

idx=idx+1"];

lcdy = onelongarray{idx) "J;

idx=idx+1"];

lccoef = onelongarray(idx) "];

idx=idx+1"];
vsum=vsum+(lccoef*vv(lci,lcj,ledx,lcdy))"];
if ((filli.eq.4).and.(fillj.eq.-2)) then "];
write(6,*)

'nv’,lccoef,lci,lcj,ledx,ledy,nv(lci,lcj,ledx,lcdy)"];

Write[stmp,"
Write[stmp,"
Write[stmp,"

endif"];
end do "];

",varlistllct]],"(£il11i,£il11j,filldx,filldy)=psum+usum+vsum"];

Write[stmp," if ((filli.eq.4).and.(fillj.eq.-2)) then "];
Write[stmp," write(6,*) ’assigning
’,f1111,fi11j,f111dx,filldy, psum,usum, vsum"];

Write[stmp," endif"];

Write[stmp," end do "];

Write[stmp," end do "];

,{ct,1,Length[varlist]}];

Write[stmp," end do "];

Write[stmp," end"];

Close[stmp];

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ -e ’s/fillfills/fillfillsdown/g’ -e
's/pp/ p/g’ -e ’s/uu/ u/g’ -e ’s/vv/ v/g’ £fillfillstmp.f >> £fillfillsdown.f"];
Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ -e ’s/fillfills/fillfillsup/g’ -e 's/pp/
np/g’ -e ’s/uu/ nu/g’ -e ’s/vv/ nv/g’ fillfillstmp.f >> fillfillsup.f"];
Run["rm fillfillstmp.£"];

);

makereadfillsfile:=(

(*

If[Not[ValueQ[maxlengthl],
maxlength=Input ["Enter the maximum length of fillarray: "1;

1;
*)

Print["Removing readfills.f"];
Run{"rm readfills.f"];
Print["Generating read the fill points definition array routine readfills.f"];

stmp=OpenWrite["readfillstmp.f" ,FormatType->FortranForm] ;

Write[stmp,"
Write[stmp,"

subroutine readfills"];
include ’common.h’"];
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———————————————————————————————————————————————— *)

(* 0dd stencils need fill done on each time step, top and bottom *)

(% -~
If[0ddQlcsizel,

Write[stmp,"
1;
Write(stmp,"

If[EvenQ[csize],

Write[stmp,"
1;
Write[stmp,"

Write[stmp,"
Write[stmp,"

Write[stmp,"
Write[stmp,"
Write[stmp,"
Writelstmp,"
Write[stmp,'"c
Write[stmp,"
Write[stmp,"
Writelstmp,"

Write[stmp,"

Close[stmp];

———————————————————————————————————————————————— *)

call fillfillsup"]
if (mod(stepn,errorsteps).eq.0) call errorcalcup'];

stagger=0 "];

physicalt=physicalt+physicaltstep "1,

do gridj=—maxmemj+2,maxmemj—2“];
do gridi=-maxmemi+2,maxmemi-2"];

call tensordown "J;
call timeadvancedown "1;

end do"];
end do"];

call periodicexdown "];

call fillfillsdown "J;

if (mod(stepn+1i,errorsteps).eq.0) call errorcalcdown"];
end do"];

end"];

Run["sed -e ’s/\"//g’ —e ’s/\\\\//g’ maintmp.f >> main.f"];
Run["rm maintmp.f"];

);

makeperiodicexfile:=(

Print["Removing periodicex.f"];

Run["rm periodicexdown.f"];

Run{"rm periodicexup.f"];

Print[“Generating periodic boundary exchange routine periodicex.f"];

If[Not{ValueQ[csizell,
csize=Input["Enter a stencil size"l;

1;

If[Not[ValueQ[degreell,
degree=Input ["Enter the degree'];
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1;
stmp=0OpenWrite["periodicextmp.f" ,FormatType->FortranForm] ;

Write[stmp," subroutine periodicex"];
Write[stmp," include ’common.h’"];

Write[stmp,"c*****x Exchange Right and Left kkkkskkktkkkrksx']
varlist={"p" . """ ) nvn};

Dol

thevar=varlist[[ct]];

(*

Do[Dol[

*)

dnotation=ToString[dx]<>"x"<>ToStringldy]<>"y";

Write[stmp," do dy=0,degree"];

Write[stmp," do dx=0,degree"];

Write[stmp," do ioffset=0,",IntegerPart[csize/2]];
Write[stmp," do lgridj=-maxj+1,maxj"];

Write[stmp," ",thevar,"(-maxi-ioffset,lgridj,dx,dy)="];
Write[stmp," * ",thevar,"( maxi-ioffset,lgridj,dx,dy) "I;
Write[stmp," end do"];

Write[stmp," end do"];

Write(stmp," do ioffset=0,",IntegerPart[csize/2]];
Write[stmp," do lgridj=-maxj+1,maxj"];

Write[stmp," ",thevar,"(maxi+i+ioffset,lgridj,dx,dy)="];
Write[stmp," * ",thevar,"(1-maxi+ioffset,lgridj,dx,dy)"];
Write[stmp," end do"];

Write[stmp," end do"];

Write[stmp," end do"];

Write[stmp," end do"];

(*

,{dx,0,degree}]
,{dy,0,degree}];
*)

,{ct,1,3}]);

Write[stmp,"c****x* Exchange Top and Bottom ¥*¥ikikkikikskkkksx']
Dol
thevar=varlist[[ct]];

(*

Do[Dol[

*)

dnotation=ToString[dx]<>"x"<>ToString[dyl<>"y";

Write[stmp," do dy=0,degree"];

Write[stmp," do dx=0,degree’];

Write[stmp," do joffset=0,",IntegerPart[csize/2]];
Write[stmp," do lgridi=-maxi+1,maxi"];

Write[stmp," “,thevar,'"(lgridi,-maxj-joffset,dx,dy)="1;
Write[stmp," * ",thevar,"(lgridi, maxj-joffset,dx,dy) "J1;
Write[stmp," end do"];
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Write(stmp," end do"];

Write[stmp," do joffset=0,",IntegerPart[csize/Z]];
Write[stmp," do 1gridi=-maxi+1,maxi”];

Write[stmp," ",thevar,"(1gridi,maxj+1+joffset,dx,dy)="];
Write[stmp," * ”,thevar,"(lgridi,1—maxj+joffset,dx,dy)"];
Writel[stmp," end do"];

Writel[stmp," end do"];

(*

,{dx,0,degreel}]

,{dy,0,degree}];

*)

Write[stmp,” end do"];

Writelstmp," end do"];

,{ct,1,3}];

Write[stmp, " cHhkkkx Exchange Corners sk ok ok KRRk kR k "]

Dol

thevar=varlist[[ct]];

(*

Do[Dol

*)

dnotation=ToString[dx]<>"x"<>ToStringldyl<>"y";

Write[stmp," do dy=0,degree"];

Write[stmp," do dx=0,degree"];

Write[stmp,"c****** Top Right skkkkkRAkkRC ]

Write[stmp," do joffset=0,“,IntegerPart[csize/2]];

Write[stmp,” do ioffset=0,",IntegerPart[csize/2]];

Write[stmp," ",thevar,”(maxi+1+ioffset,maxj+1+joffset,dx,dy)="];
Writelstmp," * ”,thevar,"(i-maxi+ioffset,1-maxj+joffset,dx,dy) "],
Write[stmp," end do"];

Write[stmp," end do"];

Write[stmp,"c****x*x Top Left *¥¥xkkikkkke "“1;

Write[stmp," do joffset=0,”,IntegerPart[csize/2]];

Write(stmp," do ioffset=0,",IntegerPartlcsize/2]];

Write[stmp," ",thevar,"(—maxi—ioffset,maxj+1+joffset,dx,dy)="];
Write[stmp," * " ,thevar,'( maxi—ioffset,1-maxj+joffset,dx,dy)"];
Write[stmp,"” end do"];

Write[stmp," end do"]l;

Write[stmp,'ck**xx* Bottom Right *xkkkxrsrxxc "];

Write[stmp," do joffset=0,",IntegerPart[csize/2]];

Write[stmp," do ioffset=0,",IntegerPart[csize/2]];

Write[stmp," ",thevar,“(maxi+1+ioffset,—maxj—joffset,dx,dy)="];
Write[stmp," * " thevar,"(1-maxi+ioffset, maxj—joffset,dx,dy)"];
Write[stmp," end do"l;

Write(stmp," end do"];

Write[stmp,"ck**xkx Bottom Left xkxkxkxrssxc "];

Write[stmp," do joffset=0,",IntegerPart[csize/2]];

Write[stmp," do ioffset=0,",IntegerPartlcsize/2]];

Write[stmp," ",thevar,"(-maxi—ioffset,—maxj—joffset,dx,dy)="];
Writelstmp," * " thevar,"( maxi-ioffset, maxj-joffset,dx,dy)“];
Write[stmp," end do"];
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Write[stmp," end do"];
(*

,{dx,0,degreel}]
,{dy,0,degree}];

*)

Write[stmp," end do"];
Write[stmp,” end do'"];
,{ct,1,3}];

Write[stmp," end"];
Close[stmp];

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ -e ’s/periodicex/periodicexdown/g’
periodicextmp.f >> periodicexdown.f"];

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ -e ’s/periodicex/periodicexup/g’ -e ’s/
p/ np/g’ -e ’s/ u/ nu/g’ -e 's/ v/ nv/g’ periodicextmp.f >>
periodicexup.f"];

Run["rm periodicextmp.f"];

)

(e *)
(* This makes the routine that fills in the fills at each time step. *)
(* Note that Hermitian schemes only fill on the bottom as the staggered *)
(* step will have the information it needs *)
(F m o *)

makefillfillsfile:=(

Print ["Removing £fillfills.f"];

Run["rm fillfillsdown.f"];

Run["rm fillfillsup.f"];

Print["Generating £ill the fill points routine fillfills.f"];

stmp=0penWrite["fillfillstmp.f",FormatType—>FortranForm];

Write[stmp," subroutine fillfills"];
Write[stmp," include ’common.h’"];

va.rlist={"pp" s uuuu ) "VV“} ;
WIite[stmp,"c**********************************************************c"];
Hrite[stmp,“c* Loop through all fill locations in correct order *c'];
Write[stmp,”c**********************************************************c"];
Write[stmp," idx=1 "];

Write[stmp," do fillct=1, numberoffillpts "];
Write[stmp," filli = onelongarray(idx)"];
Write[stmp," idx=idx+1"];

Write[stmp," fillj = onelongarray(idx)"];
Write[stmp," idx=idx+1"];

Dol

Write[stmp,"c**************************************************************c"];
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Writel[stmp," endif "];

Write(stmp," endif "];

Write[stmp," write(6,*) ’'Enter wave number for wx A
Write[stmp," read(5,*) wx "J1;

Write[stmp," write(6,*) 'Enter wave number for wy ]
Write[stmp," read(5,*) wy "1;

Write[stmp," stagger=0"1;

Write[stmp," physicalt=0.0"1;

Write[stmp," mx=0.0"];

Write[stmp," my=0.0"];

realsizeinbytes=8;
memcost= (4%iun + 24*(1 + degree) 2%iun”2 +

csize*(1 + degree)*(1 + numberofcterms) +

3%(2 + csize + csizexdegree) 2*(-1 + 2*csize*(1 + degree)))*realsizeinbytes;
(*
tffloatcost= (iun+iun+1)"2 3 * (-1 + csize + degreexcsize) 2¢(-1 + 2% (1 +
degree)*csize);
m=csize(degree+1)-1;
cefloatcost= (iun+iun+1)-2 3 * 10*(1 + degree) 2*csize 2%(-1 + csize +
degree*csize)+(3*2 m (degreet+1)”2);
flocost=cefloatcost+tffloatcost;
*)
flocostperstep={(iun+iun+1) 2% (3*(-1 + csize + degreexcsize) "2x(-1 + 2%(1 +
degree)*csize) + (1 + degree) "2*(b*csize 2%(-1 + csize + degreex*csize) + 3%(-3
+ 4*%(1 + degree)*csize)));
totalflocost=flocostperstep*numberofnsteps;

Write[stmp," write(*,*) ’2D LEE Constant Coefficient Rotated Box Problem
)"] ;

Write[stmp," write(*,*) ’Algorithm .c",csize,"d" ,degree," * "1;
Write[stmp,"” write(#*,*) ’Grid Points Per Wavelength = » 2%iun "];
Write[stmp," write(*,*) ’Mx Convection Velocity (Nondimensionalized)
',mx"];

Write[stmp," write(*,*) My Convection Velocity (Nondimensionalized)
Y,my"];

Write[stmp,"” write(*,*) ’Wx Wave Number : Yowx"];

Write[stmp," write(#,*) ’Wy Wave Number : ’,wy"];

Write[stmp," write(*, %) ’Lambda dt/dx : ’,lam"];

Write[stmp," write(*,*) ’Number of time steps : » ,numberofnsteps"];
Write[stmp," write(*,*) ’Memory Cost is (in Bytes):’,",memcost];
Write[stmp," write(*,*) ’'Floating Point Cost Per Time Step is

7, ", flocostperstepl;

Write[stmp," write(*,*) ’Total Floating Point Cost Counting all steps is

;7 ," totalflocost];

Write[stmp," write(iun,*) ’2D LEE Constant Coefficient Biperiodic B.C.
Problem ’"1;
Write[stmp," write(iun,*) ’Algorithm :c",csize,"d",degree," ’ "1;
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Write[stmp," write(iun,*) ’'Grid Points Per Wavelength = ’,2%iun "];
Write[stmp," write(iun,*) ’Mx Convection Velocity (Nondimensionalized)
t,mx"];

Write[stmp," write(iun,*) ’My Convection Velocity (Nondimensionalized)
Y,my"];

Write[stmp," write(iun,*) ’'Wx Wave Number : ’,wx"];

Write[stmp," write(iun,*) ’Wy Wave Number : 2wyl

Write[stmp," write(iun,*) ’Lambda dt/dx : ’,lam"];

Write[stmp," write(iun,*) ’'Number of time steps : ’ ,numberofnsteps"];
Write[stmp," write(iun,*) ’'Memory Cost is (Bytes):’,'",memcost];
Write(stmp," write(iun,*) ’'Floating Point Cost Per Time Step is
:7,",flocostperstep];

Write[stmp," write(iun,*) ’'Total Floating Point Cost Counting all steps is
:?,",totalflocost];

Write[stmp," call readfills "J;

Write[stmp," call definephysicalxy "];

Write[stmp," call determinefills "];

Write[stmp," call initcond "];

Write[stmp," call computefactorials "];

Write[stmp," write(*, *) * *» »].

Write[stmp," write(*,*) ",

" n t maxperr liperr phmax",

" phmin energy’"];

Write[stmp," write(*,*) ’ "].

Write[stmp," write(iun,*) * '"];

Write[stmp," write(iun,*) ",

" n t maxperr liperr phmax",

" phmin energy’"];

Write(stmp," write(iun,*) * * "];

Write[stmp,'c
Write[stmp,"
Write[stmp,"

Write(stmp,"
Write[stmp,"

If[EvenQ[csize],

Write[stmp,"
1;

Write(stmp,"
Write[stmp,"
Write[stmp,"

Write[stmp,"

Write[stmp,"
Write[stmp,"

Write[stmp,"c

call periodicexdown "];

stepn=-1"];

call errorcalcdown "J];

do stepn=1,numberofnsteps,2 "];
physicalt=physicalt+physicaltstep "];

stagger=1 "];

do gridj=-maxmemj+2,maxmemj-2"];
do gridi=-maxmemi+2,maxmemi-2"];

call tensorup "J;

call timeadvanceup "];

end do"];
end do"];

call periodicexup "1;
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Writel[stmp," open(fi1e=’fillarrays’,unit=3)"];
Write[stmp,"c*******************************************************************
Akkkdk"]

Write[stmp,"c* Read in the fill solutions from the mathematica output of file"];
write[stmp,"c* computefillarrays"l;
Write[stmp,“c*******************************************************************
*eddokkk"]

Write[stmp,”c*********************************************************c"];
Write[stmp,"c* The first element of fillarrays is the # of elements *c"];

Writelstmp,"c* The second is the # of fill point locations *c"];
Write[stmp,"c************************************************f********c"];
Write[stmp," read(3,*) lengthoffillarrays "1

Write[stmp," read(3,*) numberoffillpts "J;

Write[stmp," write(6,*) ’Number of fill points is ' numberoffillpts "];
Write(stmp," if (lengthoffillarrays.lt.maxlength) then "1;

WIite[stmp,"c*******************************************************************
c"l;

Write[stmp,'c* The minus one is because the second number in fillarrays

*c"];

Write[stmp,"c* is the number of fill points

*c"];
WIite[stmp,"c*******************************************************************

c"];

write[stmp," do i=1,lengthoffillarrays-1"];

Writel[stmp," read(3,*) onelongarray(i) "1;

Writelstmp," end do "J;

Write(stmp," else "];

Write[stmp," write(6,*) 'The fillarrays file is too large '’ "1;
Write[stmp," write(6,*) ’'Increase maxlength from ' ,maxlength,’ to
»,lengthoffillarrays+1l "];

Write[stmp," stop "1;

Write[stmp," endif"];

Write[stmp," close(3)"];

Write[stmp," end"];

Closelstmp];

Run["sed -e ’'s/\"//g’ -e ’s/\\\\//g’ readfillstmp.f >> readfills.f"];
Run["rm readfillstmp.f"];

);
makedeterminefillsfile:=(
Print["Removing determinefills.f"];

Run["rm determinefills.f"];
Print["Generating determine fill points routine determinefills.f"];

stmp=0penWrite[”determinefillstmp.f",FormatType—>FortranForm];
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Write[stmp,” subroutine determinefills"];
Write[stmp," include ’common.h’"];

Write[stmp, "ck**x"];

Write[stmp,'c*Determine which points are interior, fillin, and nothing"];
Write[stmp,”c* Note that boundary points are nothing, not used since assumed
o"1;

Writelstmp,"c* 0 = boundary , 1 = interior, 2 = fillin needed, 3 = fillin
not needed"];

Write[stmp, " cxx*x"];

Write[stmp," do lgridi=-maxmemi,maxmemi"];

Write[stmp," do lgridj=-maxmemj,maxmemj"];

Write[stmp,"c
physicalnx=rotatex(physicalx(lgridi),physicaly(lgridj),-alpha) "];
Write[stmp,"c
physicalny=rotatey(physicalx(lgridi),physicaly(lgridj),—-alpha) "];

Write[stmp," physicalnx=(cos(-alpha) * physicalx(lgridi)) + (sin(-alpha)
%

physicaly(1gridj))"];

Write[stmp," physicalny=(-sin(-alpha) * physicalx(lgridi)) +

(cos(-alpha) * physicaly(lgridj))"];

Write[stmp,"c* interior (not fillin though)"];

Write[stmp," if
((physicalnx.gt.—i).and.(physicalnx.lt.1).and.(physicalny.gt.~1).and.(physicalny
.1t.1)) then"];

Write[stmp," interior(lgridi,lgridj)=1 "];
Write[stmp," else"];

Write[stmp,"c* outside of rotated box or on boundary"];
Write[stmp," interior(lgridi,lgridj)=0"];
Write[stmp," endif"];

Write[stmp," end do"];

Write[stmp," end do"];

Write[stmp,"cx*x*"];

Write[stmp,"c* now determine the interior points which need filled in"];
Write[stmp,'c* Note that this will work for the hermitain c3ons2 algorithms
too."];

Write[stmp,"cx***"];

Write[stmp,"c* Do not need to compute outer most square of points, they are 0"];

Write[stmp," do lgridi=-maxmemi+1,maxmemi-1"];

Write[stmp," do lgridj=-maxmemj+1,maxmemj-1"];

Write[stmp," if (interior(lgridi,lgridj).eq.1) then "];
write[stmp," interior(lgridi,lgridj)=2"];

Write[stmp," if ((interior(lgridi-1, 1lgridj).ne.0).and."];
Write[stmp," - (interior(lgridi+1, 1gridj).ne.0).and."];
Write[stmp," - (interior(lgridi-1,1gridj+1).ne.0).and."];
Write{stmp," - (interior(lgridi+1,1gridj+1).ne.O).and."];
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(interior(lgridi—l,1gridj—1).ne.O).and."];

Write[stmp," (interior(lgridi+1,1gridj—1).ne.O).and."];
Write[stmp," (interior(lgridi ,lgridj+1).ne.0).and."];
Write[stmp," (interior(lgridi ,lgridj-1).ne.0)) then"];
Write[stmp," interior(lgridi,lgridj)=1 "1;

Writelstmp," endif"];

write[stmp," endif"];

Writel[stmp," end do"];

Write[stmp," end do"];

Wwrite[stmp,"c* Now determine which fill ins are not used or needed"];
Write[stmp,"c* they are not next to an interior point"l;

Write[stmp," "];

Writel[stmp," do lgridi=—maxmemi+1,maxmemi—l“];
Write[stmp," do 1gridj=—maxmemj+1,maxmemj-i”];
Write[stmp," if ((interior(lgridi,lgridj).eq.2).and."];
Write[stmp," (interior(lgridi-1, 1gridj).ne.1).and."];
Write(stmp," (interior(lgridi+1, 1lgridj).ne.1).and."];
Write[stmp," (interior(lgridi-1,lgridj+1).ne.1).and."];
Write[stmp," (interior(lgridi+1,lgridj+1).ne.1).and."];
Write[stmp," (interior(lgridi-1,lgridj-1).ne.1).and."];
Write[stmp," (interior(lgridi+1,lgridj—l).ne.1).and."];
Write[stmp," (interior(lgridi ,1gridj+1).ne.1).and.”];
Writelstmp," (interior(lgridi, lgridj—l).ne.l)) then"];
Write[stmp," interior(lgridi,1gridj)=3”];

Write[stmp," endif"];

Write[stmp," end do"];

Write[stmp," end do"];

Write [stmp , ”C********************************************************C"] 5

Write[stmp,"c* output the grid definition for mathematica to a file *c"];
Write[stmp,“c********************************************************c“];

Writel[stmp," write(4,*) maxmemi "J;

Write[stmp,” write(4,*) iun "1;

Write[stmp," do lgridi=-maxmemi,maxmemi "J;
Write[stmp," do lgridj= maxmemj,-maxmemj,=1"];
Write[stmp," write(4,*) interior(lgridi,lgridj)"];
Write[stmp," end do"];

write[stmp," end do"];

Write[stmp," end"];

Closel[stmp];

Run["sed -e ’s/\"//g’
determinefills.f"];

-e ’s/\\\\//g’ determinefillstmp.f >>

Run["rm determinefillstmp.f"];
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);

makerotatefile:=(

Print["Removing rotate.f"];

Run{"rm rotate.f"];

Print["Generating rotate routine rotate.f"];

stmp=OpenWrite["rotatetmp.f" ,FormatType->FortranForm] ;

Write[stmp," real function rotatex(xcoord,ycoord,lalpha)”];
Write[stmp," real xcoord,ycoord,lalpha,newalpha"];
Write[stmp,""];

Write[stmp,"c* Rotation in MMA is backwards"];

Write[stmp," newalpha=lalpha"];

Write[stmp," rotatex=(cos(newalpha) * xcoord) + (sin(newalpha) *
ycoord)"];

Write[stmp,""];

Write[stmp," end"];

Write[stmp,""];

Write[stmp," real function rotatey(xcoord,ycoord,lalpha)"];
WIite[stmp," real xcoord,ycoord,lalpha,newalpha"];
Write[stmp,""];

Write[stmp,"c* Rotation in MMA is backwards"];

Write[stmp," newalpha=lalpha"];
Write[stmp," rotatey=(-sin(newalpha) * xcoord) + (cos(newalpha) *
ycoord)"];

Write[stmp,""];

Write[stmp," end"];
Close[stmp];

Run["sed -e ’s/\"//g’ -e ’s/\\\\//g’ rotatetmp.f >> rotate.f"];
Run["rm rotatetmp.£f"];

);

makedefinephysicalxyfile:=(

Print["Removing rotate.f"];

Run["rm definephysicalxy.f"];
Print[”Generating rotate routine rotate.f"];

stmp=0penWrite[”definephysicalxytmp.f”,FormatType—>FortranForm];

Write[stmp," subroutine definephysicalxy"];
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Writelstmp," include ’common.h’"];
Write[stmp,""];
Write[stmp,"c* Define the physical coordinates in terms of integer indeces"];

Write[stmp," do 1gridi=—",maxmemi,",",maxmemi];
Write[stmp," physicalx(lgridi)= lgridi * h"];
Write[stmp," end do"];

Write[stmp," do 1gridj=—”,maxmemj,",",maxmemj];
Write[stmp," physicaly(lgridj)= lgridj * h"];
Writelstmp,” end do"];

Write[stmp," end"];

Close[stmp];

Run["sed -e ’s/\"//g’ =-e ’s/\\\\//g’ definephysicalxytmp.f >>
definephysicalxy.f"];
Run["rm definephysicalxytmp.£f"];

s
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B.6 Wall Boundary Calculation File — ma2d

I

This code will produce the fill file described in section 5.5.

(% ———— e *)

(* Do the rotated box case *)

(k ———— e *)

(o e *)
(* Use memory constrain later for larger objects *)
(F m *)
(*

<< Utilities ‘MemoryConserve’

*)

<< Geometry‘Rotations’

<< LinearAlgebra‘MatrixManipulation®

<< NumericalMath‘Horner‘

<< Graphics‘PlotField°

<< Utilities‘BinaryFiles*

startma:= (

Clear [makeequall;

If[Not[ValueQ[csize]ll,

csize=Input["Enter the stencil size: "];

1;

If[Not[ValueQ[degreell,
degree=Input["Enter the degree: "J];
1;

correctfillordering={};

johnlist7={};

johnlist8={};

topleftlist={};

If[Not[ValueQ[readgridl],

readgrid=Input["Do you wish to read a grid definition file (1=Yes,0=No)"];
1;

(F — oo o *)
(* Either read grid definition file or create one in mathematica *)
(F s —————— . *)
If[readgrid==0,

buildcurves;

buildgrid,

buildcurves;

Print["Reading Grid File"];

readgridproc;

Print["Drawing Grid"];

drawgrid

1;

Print["Calculating the 2D Hermitian Polynomial based Boundary Conditions"];
buildequationsforafillpoint;
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Print[*Defining Arrows"];
definearrows?2;

Clear[x,yl;

Print["Draw Entire Graph"l;
drawentiregraph;

Print["Making fill arrays"];
makefillarrays;

Clear(x,y,i,j,xc,yc,xf,yf];

initproc;

getintformx;

getintformy;

Clear(a,b,c];

ncp[a_,b_,c_]:=(-(b+1)(my cpla,b+1,c-1] + cvla,b+1,c-1]) -(a+1) (mx
cplat+1,b,c-1] + cula+1,b,c-11))/c;

ncula_,b_,c_l:=(-(b+1) my cula,b+1,c-1] - (a+1) ( mx cula+t,b,c-1] +
cpla+1,b,c-11 ))/c;

nevla_,b_,c_]1:=(~(b+1) ( my cvla,b+1,c-1] + cpla,b+1,c-1] ) -(a+1) mx
cvla+i,b,c-11)/c;

(*
initializetimestepping;
dothetimestepping;

*)

);

initializetimestepping:=(
physicaltime=0.0;

stepnumber=0;

mx=0;

my=0;

stagger=0;

(*

assigninitialdata;

*)

assigninitialdataZ2;
Print["Starting time advance "],
Print["N, t, maxperr liperr phmax phmin eratio"];
showerror;

lam=.2;

timestep=lam*deltax;

)

(% ———mm—mmm e —m e —mm—m oo —m———oo———o— oo oo x)
(* This loop performs the timestepping of the solution *)
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dothetimestepping:=(

While[physicaltime<=1.0,

(%

While[stepnumber<=1,

*)

(* Up Step *)

If[EvenQ[csize],

stagger=1];

dotimeadvance;

(* Do not do fill in on staggered grid for even stencils *)

If[0ddQ[csize],

assignfillins;

1

physicaltime=physicaltime+timestep;

stepnumber=stepnumber+1;

(K o *)
(* The stagger step should not be displayed, but could be later if desired *)
(K . *)
If(0ddQlcsize],

showerror;

1

(* Down Step *)

If[EvenQ[csize],

stagger=0];

dotimeadvance;

assignfillins;

physicaltime=physicaltime+timestep;

stepnumber=stepnumber+1;

showerror;

1

)i

(K e
(* This procedure will create a list of each fill data type

(* (p,u,v,px,pxx,pxy,ux,... etc.)

(* Each list will contain information to be read by the FORTRAN code to
(* compute its fill pts
(* using interior known grid points only.

(F m e

(K m
(* get the list of fill positions - those not needed in terms of matrix
(* coordinates

(F o

fillposlist=correctfillordering;
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Print["Total number of needed fill points is ",Length[fillposlistl];

(F ——mmm Mmoo *)
(* Convert the matrix coordinates to grid coordinates *)
(¥ ——mmm e oo oo oo oo esee s *)

Clear [matrixi,matrixj];

fillgridposlist=fillposlist /. {{matrixi:_,matrixj:_} -> {matrixj - im -
1,-matrixi + im + 1}};

(*

fillgridposlistFORTRAN=F1atten[fillgridposlist];

*)

(K —mmmmm o eSS ooooSsoooommmmmm e *)
(* Create an array for each data type using the same ordering as fillposlist *)

(¥ e m S oo oSS SSmossoooomoTmmmTmmee *)

(*
dataPerGridPoint=3;
*)
numberofprimtypes=3;
onelongarray={};
alldatalists={};

T et *)
(* Locp through all needed fills , creating a list *)
(% ~mmmm—m e — e —-— oo —oo oo *)
Dol

gridi=fillgridposlist[[£illptct]][[1]];
gridj=fillgridposlist[[£illptct]] [[21];
packetlist={gridi,gridj};

Print["starting with packet at ",gridi,gridjl;
packetlistFORTRAN={};

(F mmm e e oSS mSoCSSSSsSoommoosTEmmmmeTe *)
(* loop through all the data types at a single fill/grid point, *)
(* a list for each *)
Tttt *)
Do[Do[ Dol

matrixi=fillposlist[[fillptct]][[11];
matrixj=fillposlist[[fillptct]][[2]];
variablelist=Variab1es[fillsolutiongrid[[matrixi,matrixj,primtypect,dx+1,dy+1]]]

(# ———mm e oo moSoo—oo——seooe s *)
(* Determine # of p data, u data, and v data for onelongarray *)
(% —mm e m oo — oo oo oS moosooes *)
datacases={};

AppendTo[datacases,Cases[variablelist, pressurel_,_,_,_111;
AppendTo[datacases,Cases[variablelist,uvelocity[_,_,_,_]]];
AppendTo[datacases,Cases[variablelist,vvelocity[_,_,_,_]]];

(% ———=——mm— = *)

(* Start the packet *)
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(*
packetlist={Length[datacases]};
packetlist={};

*)

Dol

(% —— *)
(* Insert # of p, u and v data *)
(* *)

AppendTo[packetlist,Length{datacases[[casect]]]];
,{casect,1,Length[datacases]}];

I e  —— *)
(* Add the data points to packet *)
L T —— *)
(* Loop though all variable types *)

(F —mmm e *)

Dol
T *)
(* Loop through all variables of type ct *)
(F e *)
Do[

stencilpt=datacases[[casect]][[ct]];
Clear[mi,mj,mdx,mdy];

(F —— e *)
(* Get the matrix coordinates of the data element *)
(F *)
matrixitemp=stencilpt /.{ _[mi:_,_,_,_] -> mi };
matrixjtemp=stencilpt /.{ _[_,mj:_,_,_] -> mj };

I e T —— *)

(* Get the Derivatives of the data element *)

(k m— e e *)

ldx=stencilpt /.{ _[_,_,mdx:_,_] -> mdx };
ldy=stencilpt /.{ _[_,_,_,mdy:_] -> mdy };

(% —mm e *)
(* Convert it to grid coordinates *)
It TSI —— *)

gridi= matrixjtemp - im - 1;
gridj=-matrixitemp + im + 1;

(% ~—— *)
(* For now use no derivatives *)
( -l *)

coef=FortranForm[Coefficient[fillsolutiongrid[[matrixi,matrixj,primtypect,dx+1,d
y+11],stencilpt]];

R e — *)
(* Use ptdata={gridi,gridj,ldx,1ldy,coef}; later *)
(F —m e~ *)
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ptdata={gridi,gridj,ldx,ldy,coef};

(*

ptdata={gridi,gridj,coef};

*)

AppendTo[packetlist,ptdatal;

(h —mmmmmm e m oo oomooo—— oo *)
(* # of p or u or v data elements for this fill point *)
T *)
(* Add loop for dx, and dy data *)
,{ct,1,Length[datacases[[casect]]]}];

(% —mmmm— e oo — oo oo *)

(* Will be 3 for p,u,v in 2D and 4 for p,u,v,w in 3D *)

(% ——mmmm e — e oo —— oo *)
,{casect,1,Length[datacases]}];

(% —mmmm— oo —— oo oo *)

(* Now have a complete packet for current fill point *)

(% —mm—mm—mm o mm— oo oosme e *)

(* Add the packet to the list of other packets for this data type list *)
(% o mmmm e oo —SoosSooomeo oo *)

AppendTo[packetlistFDRTRAN,Flatten[packetlist]];

(* packetlistFORTRAN has *)
(*{fillptlocx,fillptlocy,#ofp,#ofu,#ofv,pi,pj,pdx,pdy,pcoef,...,
ui,uj,udx,udy,ucoef, ...,
vi,vj,vdx,vdy,vcoef,...,
#ofp,#ofu,#ofv,pi,pj,pdx,pdy,pcoef, ...,
ui,uj,udx,udy,ucoef, ...,
vi,vj,vdx,vdy,vcoef,...,

. Until all data elements at fill point are

done. ..
fillptlocx,fillptlocy,#ofp,#ofu,#ofv,pi,pj,pdx,pdy,pcoef,...,
... etc.
until all fill points are defined ...

*)

T *)
(* packetlistFORTRAN contains a list of packets. Each packet corresponds to *)
(* a £fill point. All packets are for a single data element type however. *)

(* This process is repeated for all the data elements that are at grid point *)
(* Each packet provides a linear combination of the data required to compute *)
(* single data element at a single fill point location *)

T *)
,{dx,0,degree}]

,{dy,0,degree}]

,{primtypect,1,numberofprimtypes}];

AppendTo[onelongarray,packetlist];
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,{fillptct,1,Length[fillposlist]}];
onelongarray=Flatten[onelongarray];

PrependTo[onelongarray,Length[fillposlist]];
PrependTo[onelongarray,Length[onelongarrayl];
maxlength=Length[onelongarray];

(*
stmp=OpenWriteBinary["fillarrays.bin",FormatType->FortranForm] ;
*)

stmp=OpenWrite["fillarrays"];

Dol

(*

Write[stmp,onelongarray];

*)

Write[stmp,onelongarray[[ct]]];

,{ct,1,Length[onelongarrayl}];

Close[stmp];

);

(F m *)
(* This procedure will use the values of the interior points to determine *)
(* the value of the fill in points. *)
(F *)
assignfillins := (

(F e

*)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1 in *)

(* top left

(F

correctedil[thisj_]:=im-thisj+1;
correctedjlthisi_]:=im+thisi+i1;

Dol

(*

matrixicoord=correctediljct];
matrixjcoord=correctedjlict];

*)
matrixicoord=correctfillordering[[fillptct]][[1]];
matrixjcoord=correctfillordering[[fillptct]] [[2]];

(F e e *)
(* If this location is a fillin and its needed, then fill it in with data *)
(k. *)

If[thegrid[[matrixicoord,matrixjcoord]]==2,
If[Not [MemberQ[ignorelist,{matrixicoord,matrixjcoord}l1],

(¥ ~—— *)
(* For now use no derivatives *)
(¥ mmmmm e *)
(*

1dx=0; 1dy=0;

*)
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Dol[Dol

prelation=fillsolutiongrid[[matrixicoord,matrixjcoord,1,1dx+1,1dy+1]];
urelation=fillsolutiongrid[[matrixicoord,matrixjcoord,2,1dx+1,1dy+1]];
vrelation=fillsolutiongrid[[matrixicoord,matrixjcoord,B,ldx+1,ldy+1]];

T *)
(* Assign the fill in using the equation stored in fillsolutiongrid *)
Tt *)

Clear[al,bl,ci,dl,el,fl,g1,i1,j1,k1];
Clear[aal,bbl,ccl,ddl,eel, ff1,ggl,ii1,jj1,kki];

rhsi=(prelation /. {
pressure[al:_Integer,bi:_Integer,aai:_Integer,bbl:_Integer] ->
pressuregrid[[al,b1,aal+1,bb1+111});
Clear[ai,bl,cl,dl,el,fl,gl,ii,jl,kl];
Clear[aai,bbi,cci,ddl,eei,ffl,ggi,iii,jjl,kki];

rhs2=(urelation /.
{uvelocity[cl:_Integer,dl:_Integer,ccl:_Integer,ddi:_IntegerJ ->
uvelocitygrid[[cl,dl,cc1+1,dd1+1]],
vvelocity[ei:_Integer,fi:_Integer,eel:_Integer,ffl:_Integer] ->
vvelocitygrid[[e1,f1,eel+1,££1+1]11});
Clear[al,bi,ci,di,ei,fl,gl,il,jl,kl];
Clear[aai,bbi,ccl,ddl,eel,ffl,ggl,iii,jji,kki];

rhs3=(vrelation /.
{vvelocity[gi:_Integer,ii:_Integer,gg1:_Integer,iil:_Integer] ->
vvelocitygrid[[gi,il,ggi+1,111+1]],
uvelocity[jl:_Integer,kl:_Integer,jj1:_Integer,kk1:_Integer] ->
uvelocitygrid[[j1,k1,jji+1,kk1+111});

(*

Print["Fill assigning " matrixicoord," , ", matrixjcoord," ",rhsil," ",rhs2,"
* rhs3];

*)

pressuregrid[[matrixicoord,matrixjcoord,ldx+1,1dy+1]]=rhsi;
uvelocitygrid[[matrixicoord,matrixjcoord,1dx+1,1dy+1]]=rhs2;
vvelocitygrid[[matrixicoord,matrixjcoord,ldx+1,1dy+1]]=rhs3;
,{1dx,0,degree}]

,{1dy,0,degree}]

11

,{fillptct,l,Length[correctfillordering]}];

(*

,{ict,~-im,im}]

,{jct,—im,im}];

*)

)

(K e oSS SoossoomomoTTmmmmT *)
(# This procedure will advance the primitive variables p,u,v to the next time *)
(*# step *)
(K mmmm e S SC S SoSsooooomoeom T *)
dotimeadvance := (

h=deltax;

NASA/TM—1999-209182



258

nextpressuregrid
=Table[Table[Table[Table[0,{dy,0,degree}],{dx,0,degree}],{j,-im,im}]1,{i,~im, im}]
nextuvelocitygrid
=Tab1e[Tab1e[Tab1e[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}],{i,—im,im}]
nextvvelocitygrid
=Table[Tab1e[Table[Table[0,{dy,0,degree}],{dx,O,degree}],{j,—im,im}],{i,—im,im}]

>

(ke *)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with *)
(* 1,1 in top left *)
(F *)

correctedil[thisj_]:=im-thisj+1;
correctedj[thisi_J:=im+thisi+1;

Do[Dol[
matrixicoord=correctediljct];
matrixjcoord=correctedjlict];

If[Not[ValueQ[interpolantorder]],
interpolantorder=csize* (degree+1);

1;
numberofcterms=interpolantorder-1;
(% —mmmmmmmm *)

(* Compute s *)

(* —mmmmmme- *)

If[EvenQ[csize],

Dol

Dol

Do[

s[dy,iindex, j]=Collect[xc[iindex],fcl_,_,_,_11;
,{iindex,0,numberofcterms}]

,{dy,0,degree}]

,{j,1-(csize/2),csize/2}];

Dol

Dol

Dol

s[dy,iindex, jl=Collect[xcliindex],fcl_,_,_,_1];
,{iindex,0,numberofcterms}]

,{dy,0,degree}]
,{j,-IntegerPart{csize/2],IntegerPart[csize/2]}];

1;

(f —m *)
(* Compute a, spatial interpolants cp,cu,cv *)
(% —m e *)
Clear[iindex, jindex,kindex];

Do[Do[Do[
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(*

1f[(iindex>maxind || jindex >maxind),
cpliindex, jindex,kindex]=0;
cul[iindex,jindex,kindex]=0;
cv[iindex,jindex,kindex]=0;
]

*)
cpliindex,jindex,kindex]=0;
culiindex, jindex,kindex]=0;
cv[iindex,jindex,kindex]=0
,{iindex,0,maxind+2}]
,{jindex,0,maxind+2}]
,{kindex,0,2 maxind}];

Dol

Dol

Clear [newdx,newdy,newi,newjl;

Clear [newdx2,newdy2,newi2,newj2];

(* CP SPATIAL COEFFICIENTS *)

cp[iindex,jindex,0]=yc[jindex] /. {fclnewdx:_,newdy:_,newi:_,newj:_] ->
s[newdy,newdx,newj] } /. {dx->iindex} /.

{ fclnewdx2:_,newdy2:_,newi2:_,newj2:.] ->

pressuregrid[[matrixicoord—newj2,matrixjcoord+new12,newdx2+1,newdy2+1]]}; ;

(*

Clear [newdx,newdy,newi,newjl;

Clear [newdx2,newdy2,newi2,newj2];
cpliindex,jindex,0]=cpliindex, jindex,0] /. {
fc[newdx2:_,newdy2:_,newiZ:_,newj?:_] ->
newfc[matrixicoord—newj2,matrixjcoord+newi2,newdx2+1,newdy2+1] };
Clear[newdx2,newdy2,newi2, newj2]l;
cp[iindex,jindex,O]=cp[iindex,jindex,0] /. 1L
fc[newdx2:_,newdy2:_,newi2:_,newj2:_] ->
pressuregrid[[newdx2,newdy2,newiQ,newj2]]};

*)

(*
pressuregrid[[matrixicoord—neij,matrixjcoord+newi2,newdx2+1,newdy2+1]]};

*)

(* CU SPATIAL COEFFICIENTS *)

Clear[newdx,newdy,newi,newjl;

Clear[newdx2,newdy2,newi2,newj2];

culiindex,jindex,0]=yc[jindex] /. {fcnewdx:_,newdy:_,newi:_,newj:_] ->
s[newdy,newdx,newj] } /. {dx->iindex} /. {

fc[newdx2:_,newdy2:_,newi2:_,newj2:_]—>

uvelocitygrid[[matrixicoord—newj2,matrixjcoord+newi2,newdx2+1,newdy2+1]]};

(* CV SPATIAL COEFFICIENTS *)

Clear [newdx,newdy,newi,newjl;

Clear [newdx2,newdy2,newi2,newj2];

cvliindex, jindex,0]=yc[jindex] /. {fc[newdx:_,newdy:_,newi:_,newj:_ ] ->
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s[newdy,newdx,newjl } /. {dx->iindex} /. {
fclnewdx2:_,newdy2:_,newi2:_,newj2:_J->
vvelocitygrid[[matrixicoord—newj2,matrixjcoord+newi2,newdx2+1,newdy2+1]]};
,{jindex,0,numberofcterms}]
,{iindex,0,numberofcterms}];

(F e *)
(* Compute cp,cu,cv, time-space interpolant coefficients *)
(% e o *)
Do[Do[Do[

cpliindex, jindex,kindex]=ncpliindex, jindex,kindex];
cul[iindex, jindex,kindex]=nculiindex, jindex,kindex];
cvliindex, jindex,kindex]=ncv[iindex, jindex,kindex] ;
»{iindex,0,Min[maxind,2*maxind-kindex-jindex]}]
,{jindex,0,maxind}]

,{kindex,1,2 maxind}];

(* Time advance NOT using Horner form *)

Do[Dol

psum=0.0;usum=0.0; vsum=0.0;

Dol

(*

psum=psum+dx! * dy! * physicaltstep**kindex*cpl[dx,dy,kindex];
usum=usum+dx! * dy! * physicaltstep**kindex*culdx,dy,kindex];
vsum=vsum+dx! * dy! * physicaltstep**kindex*cv[dx,dy,kindex];
*)

psum=psum+(dx! * dy!) * (timestep kindex)*cpl[dx,dy,kindex];
usum=usum+(dx! * dy!) * (timestep~kindex)*culdx,dy,kindex];
vsum=vsum+(dx! * dy'!) * (timestep~kindex)*cv[dx,dy,kindex];
,{kindex,0,2 maxind}];

(% = o *)

(* Use -stagger since using matrix indeces *)

(* dx+1,dy+1 not dx,dy since in matrix notation *)

(% —m e o *)

(*

Print[“Assigning ",matrixicoord-stagger," , ",matrixjcoord+stagger," , '",psum,"
) ",usum," s ",vsum];

*)

nextpressuregrid[[matrixicoord—stagger,matrixjcoord+stagger,dx+1,dy+1]]=psum;
nextuvelocitygrid[[matrixicoord-stagger,matrixjcoord+stagger,dx+1,dy+1]]=usum;
nextvvelocitygrid[[matrixicoord-stagger,matrixjcoord+stagger,dx+1,dy+1]]=vsunm;
,{dx,0,degree}]
,{dy,0,degreel}];

,{ict,-im+2,im-2}]
J{jet,-im+2, im-23}];

(¥ e *)

(* Put the time advanced level back onto the first time level *)
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( —mmmm e oo oo — oo mmemomes *)
pressuregrid=nextpressuregrid;

uvelocitygrid=nextuvelocitygrid;
vvelocitygrid=nextvvelocitygrid;

);

showerror := (

(*

stmp4=OpenWrite["mmaerrorfile3"];

*)

(F —mmm e oSS CS S SSSSSoomoeoemmmmmmTTe *)
(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1 in  *)
(* top left *)
Tttt *)
correctedilthisj_]:=im-thisj+1;

correctedj[thisi_]:=im+thisi+l;

maximumerrorfound=0.0;

lierror=0.0;

maxpressurefound=0.0;

minpressurefound=0.0;

currentenergy=0.0;

Tt *)
(* Loop through all fill’s and int’s computing pressure error at this timestep  *)
(* number *)
T *)
Do[Do(

matrixicoord=correctedi[jct];

matrixjcoord=correctedjlict];
oldphysicalpositionvector={ict*deltax,jct*deltax};
newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[—theta],{0,0}];
newphysicalicoord=newphysicalpositionvector[[1]];
newphysicaljcoord=newphysicalpositionvector[[2]];

If[thegrid[[matrixicoord,matrixjcoordl]==1 ||
thegrid[[matrixicoord,matrixjcoord]]==2,
If[Not[MemberQ[ignorelist,{matrixicoord,matrixjcoord}]],

(% ~m=——m—m— e —mmmm e — oo ————————o— oo *)
(* Add up the current global energy in system *)
(¥ ——=m—m—m e m s oo oo *)
(*

WIite[stmp4,pressuregrid[[matrixicoord,matrixjcoord,1,1]],”
",uvelocitygrid[[matrixicoord,matrixjcoord,1,1]],"
“,vvelocitygrid[[matrixicoord,matrixjcoord,1,1]]," " currentenergy,' ",ict,"

", jetd;

*)

currentenergy=currentenergy+(pressuregrid[[matrixicoord,matrixjcoord,1,1]]’2
+uvelocitygrid[[matrixicoord,matrixjcoord,1,1]]‘2+vvelocitygrid[[matrixicoord,ma
trixjcoord,1,1117°2);

(¥ ————m—mmmm e —— e *)

(* The plus comes from a minus minus *)
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e e T w—— *)

absoluteperror =
Abs[N[pressuregrid[[matrixicoord,matrixjcoord,1,1]]+(Cos[Sqrt[2] Pi
physicaltime] Cos[Pi newphysicalicoord] Cos[Pi newphysicaljcoord])]];

(%~ ————— *)

(* Convert x and y coordinates to polar coordinates *)

(F m el *)

(*

physicaltheta = ArcTan[newphysicalicoord,newphysicaljcoord];

*)

physicalr = Sqrt[newphysicalicoord~2+newphysicaljcoord=2];

(F —— *)
(* Can use any of the eigenvalues from BesselJPrimeZeros[0,n] *)
(F *)

bessellam:=3.83171;

R[r_] := Sqrt[2] BesselJ[0,bessellam r]/Bessell[0,bessellam];
(* Can use any constant *)

besseld=5;

(*
correctanswer=besseld R[physicalr] Cos[bessellam physicaltime] / Sqrt[2 Pil;
Print["Correct Answer at matrixi,matrixjj is
",matrixicoord,"," ,matrixjcoord,",",correctanswer,"
",pressuregrid[[matrixicoord,matrixjcoord,1,111];
*)
(*
absoluteperror =
Abs [N[pressuregrid[[matrixicoord,matrixjcoord,1,1]]~correctanswer]];
*)
If [absoluteperror > maximumerrorfound,
maximumerrorfound=absoluteperror;
matrixilocationoferror=matrixicoord;
matrixjlocationoferror=matrixjcoord;
1;
lierror = llerror + absoluteperror;
(*
Print["p=",matrixicoord,“,",matrixjcoord,”,“,pressuregrid[[matrixicoord,matrixjc
oord,1,1]1];

Print["u=",matrixicoord,“,",matrixjcoord,",",uvelocitygrid[[matrixicoord,matrixj
coord,1,1]11];
Print["v=",matrixicoord,",“,matrixjcoord,“,",vvelocitygrid[[matrixicoord,matrixj
coord,1,111];

*)

If [pressuregrid[[matrixicoord,matrixjcoord,1,1]] > maxpressurefound,
maxpressurefound = pressuregrid[[matrixicoord,matrixjcoord,1,1]1];
If[pressuregrid[[matrixicoord,matrixjcoord,1,1]] < minpressurefound,
minpressurefound = pressuregrid[[matrixicoord,matrixjcoord,1,1]11];
1]

,{ict,-im,im}]

,{jct,-im,im}];
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(*

Close[stmp4];

*)
energyratio=currentenergy/initialenergy;
lierror=lierror*deltax”2;

Print [stepnumber,"”. ", physicaltime," ", maximumerrorfound,” ", lierror,"”
", maxpressurefound, " ", minpressurefound, " “, energyratiol;

);

At *)

(* This procecure will assign all primitive variables their initial data *)

T *)
assigninitialdata := (

pressuregrid

=Tab1e[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}],{i,-im,im}]
uvelocitygrid
=Tab1e[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}],{i,—im,im}]
vvelocitygrid
=Tab1e[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}],{i,-im,im}]
(*

uvelocitygrid=Tab1e[Table[O,{j,—im,im}],{i,-im,im}];
vvelocitygrid=Tab1e[Table[O,{j,-im,im}],{i,—im,im}];

*)

et *)
(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1  *)
(* in top left *)
(K —mmm e oS C oS SSSSSomoomoommTTEmmm T *)

correctedil[thisj_]:=im-thisj+1;
correctedj[thisi_]:=im+thisi+1;

(# —mmmmm e oo oSS ooTmom oo *)
(* Loop through all grid points, assigning rotated initial data *)
(¥ —mmmmmm e m e — e oo— oo osmmoomm oo *)
initialenergy=0.0;

Do[Dol

matrixicoord=correctediljct];

matrixjcoord=correctedjlict];
oldphysicalpositionvector={ict*de1tax,jct*deltax};
newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[—theta],{0,0}];
newphysicalicoord=newphysicalpositionvector[[1]];
newphysicaljcoord=newphysicalpositionvector[[2]];

T *)
(* if the point is an interior or £ill, then assign it an initial condition *)
(K = m e TS SSoSsoommmmoTTTEmTTe *)
(h ———=m—mmm— e mm oo ———— oo *)
(* Assign Bessel Function for circle problem *)
(F —=———mmmmm— e —m oo ——s———so oo *)

If[thegrid[[matrixicoord,matrixjcoord]]l==1 |
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thegrid[[matrixicoord,matrixjcoord]]==2,
If[Not[MemberQ[ignorelist,{matrixicoord,matrixjcoord}]],
pressuregrid[[matrixicoord,matrixjcoord,1,111=N[ -(Cos[Pi newphysicalicoord] *
Cos[Pi newphysicaljcoord])];

uvelocitygrid[[matrixicoord,matrixjcoord,1,1]]= 0.0;
vvelocitygrid[[matrixicoord,matrixjcoord,1,1]1]= 0.0;

I *)
(* Add up initial energy *)
(% - *)

initialenergy=initialenergy+(pressuregrid[[matrixicoord,matrixjcoord,1,1]]"2
+uvelocitygrid[[matrixicoord,matrixjcoord,1,1]]‘2+vvelocitygrid[[matrixicoord,ma
trixjcoord,1,11]1°2);

]

]

JAict,-im, im}]

,{jet,-im, im}]

)l

assigninitialdata2 := (

pressuregrid
=Tab1e[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}],{i,—im,im}]
uvelocitygrid
=Tab1e[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}].{i,—im,im}]
vvelocitygrid
=Table[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{j,—im,im}],{i,—im,im}]
(*

uvelocitygrid=Table[Table[0,{j,~im,im}],{i,-im, im}];
vvelocitygrid=Table[Table[0,{j,~im,im}],{i,-im,im}];

*)

(F — —————————-— ———— %)
(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1  *)
(* in top left *)
(K e *)

correctedi[thisj_]:=im-thisj+1;
correctedj[thisi_]:=im+thisi+1;

(¥ e . *)
(* Loop through all grid points, assigning rotated initial data *)
L T *)
initialenergy=0.0;

Do[Do[

matrixicoord=correctediljct];

matrixjcoord=correctedjlict];
oldphysicalpositionvector={ict*deltax, jct*deltax};
newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[-thetal,{0,0}];
newphysicalicoord=newphysicalpositionvector[[1]];
newphysicaljcoord=newphysicalpositionvector[[2]];

(K *)

(* if the point is an interior or fill, then assign it an initial condition *)
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(K —mmm eSS —ooSo oo SSsmoooomoo o *)
(k —mm—mm— e m o — oo *)
(* Assign Bessel Function for circle problem *)
(% =———mm—mm e —m e m e m— e e— oo *)

If [thegrid[[matrixicoord,matrixjcoord]]==1 [
thegrid[[matrixicoord,matrixjcoord]]==2,
If[Not[MemberQ[ignorelist,{matrixicoord,matrixjcoord}]],

Do[Dol

correctp=D[-Cos[Pi x] Cos[Pi yl,{x,dx},{y,dy}];
pressuregrid[[matrixicoord,matrixjcoord,dx+1,dy+1]]=N[ correctp /. {
x->newphysicalicoord, y->newphysicaljcoord}];

(* ‘
Print[”p=",matrixicoord,matrixjcoord,dx+1,dy+1,newphysicalicoord,newphysicaljcoo
rd,correctpl;

*)

uvelocitygrid[[matrixicoord,matrixjcoord,dx+1,dy+1]]= 0.0;
vvelocitygrid[[matrixicoord,matrixjcoord,dx+1,dy+1]]= 0.0;

,{dx,0,degree}]
,{dy,0,degree}];
(% —————m *)
(* Add up initial energy *)
(% ———m—mm - *)

initialenergy=initia1energy+(pressuregrid[[matrixicoord,matrixjcoord,1,1]]’2
+uve10citygrid[[matrixicoord,matrixjcoord,1,1]]‘2+vvelocitygrid[[matrixicoord,ma
trixjcoord,1,11]172);

]

]

,{ict,-im,im}]

,{jct,-im, im}]

)

( —mmm e oo oo ST o oo ooSmssommmmmoommem *)
(x This procedure will generate a matrix of the entire grid, marked with *)
(* 1 for Interior, 2 for Fill, and 0 for boundary *)
(* It needs to be given the list of curves, and a single point for each *)
(* object signifying the inside of the solid object *)
(K —mmmmm e TS o oSS SsSSmoooooemeTe *)

et *)
(* Expand depth of recursion, uses 10,000 bytes per depth, use memory *)
(* constrained *)
(¥ —mm e e oSS oo oo S SSSsooomommmmmmmmeT *)

$RecursionLimit=(2 im + 1 ) ~ 2;
bigcount=0;

(* ———m———m e *)
(* Set entire grid to 0, all boundary *)
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(% ———m—mmme e - - ——— %)
thegrid=Table[Table[0,{i,~im,im}],{j,~-im,im}];
arrowgrid=Table[Table[{{0,0}},{i,~im,im}],{j,~im,im}];

(*
udxdylist=Table[Table["U",{dx,0,degree}],{dy,0,degree}];
I T ——— *)

(* Make a big list combining p,u, and v *)

(% ——— e *)

bigulist={udxdylist,udxdylist,udxdylist};
fillsolutiongrid=Table[Table[bigulist,{i,-im,im}],{j,-im,im}];

*)
fillsolutiongrid=Table[Table[Table[Table[Table["U",{dy,0,degree}],{dx,0,degree}]
,{ict,1,3}],{j,-im,im}],{i,-im,im}];

(*
fillsolutiongrid=Table[Table[{"U”,“U","U"},{i,—im,im}],{j,—im,im}];

*)
gridp=Table[Table[Tab1e[Table[pressure[i+im+1,j+im+1,dx,dy],{dy,o,degree}],{dx,o
,degree}],{j,~im,im}],{i,~im,im}];
gridu=Tab1e[Table[Table[Table[uvelocity[i+im+1,j+im+1,dx,dy],{dy,O,degree}],{dx,
0,degree}],{j,-im,im}],{i,-im, im}];
gridv=Table[Table[Table[Table[vvelocity[i+im+1,j+im+1,dx,dy],{dy,O,degree}],{dx,
0,degree}],{j,-im,im}],{i,-im, im}];

(*

gridu=Table[Table[uvelocity[i+im+1,j+im+1],{j,-im, in}],{i,-im, im}];
gridv=Table[Table[vvelocity[i+im+1,j+im+1],{j,~im,im}],{i,-im,im}];

*)

(K m *)
(* Fill all areas with interior and fill labels where justified *)
(* By starting at each point defined to be inside, recursively. *)
(¥ mm *)
Dol

gridi=listofcenterpoints[[centerct]][[1]];
gridj=listofcenterpoints[[centerct]][[2]];
recursivelabellgridi,gridj]
,{centerct,1,Length[listofcenterpoints]}];

$RecursionLimit=256;

(¥ e & *)
(* Draw a picture of fills, ints, B’s, grid and curves *)
(F m e *)

correctedilthisj_J:=im-thisj+1;
correctedj[thisi_]:=im+thisi+1;

alpha=theta;

picturelist={};

Do[Dol[

thevalue=thegrid[[correctedi[j]]] [[correctedj[il]];
physicali=i*deltax;
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physicalj=j*deltay;

If [thevalue==1,theobject=Disk[{physicali,physicalj},.03]];
If[thevalue==2,theobject=Circ1e[{physicali,physicalj},.03]];
If[thevalue==0,theobject=Text[”B",{physicali,physicalj},{0,0}]];
picturelist=Append[picturelist,theobject]

,{i,~im, im}]

,{j,-im,im}]1;

titlestring="Rotation Angle = "<>ToString[N[alphall;
filestring="boxat"<>ToString[N[alphall;
SetOptions[Display,ImageSize-> 72 * 8, ImageRotated->True] ;

(*

Display[filestring,
Show[Graphics[{PointSize[0.0E],picturelist}],PlotLabel—>titlestring],”EPS”];
Show[Graphics[{PointSize[0.0S*deltax],picturelist}],PlotLabe1—>titlestring,Aspec
tRatio->Automatic];

*)

(*
Show[Graphics[{PointSize[0.0S],picturelist,Line[line[l]],Line[line[2]],Line[line
[3]],Line[line[4]],{PointSize[.OZ],Point[{0,0}]}}],PlotLabel—>titlestring,Axes—>
True,AspectRatio—>Automatic,GridLines->{ticklist,ticklist}];

*)
Show[Graphics[{PointSize[0.0s],picturelist,{PointSize[.02],Point[{0,0}]}}],g2,Di
splayFunction->$DisplayFunction,PlotLabe1—>tit1estring,Axes—>True,AspectRatio—)A
utomatic,GridLines—>{ticklist,ticklist}];

);

(¥ —m e oo Smosmmomm e *)

(* This procedure will label a Cartesian grid with 1’s and 2’s *)

(* if one of its edges cuts a boundary, this is a fill point = 2 *)

(¥ Will recursively call its other neighbors that do not have a *)

(* boundary in between. *)

(* X X X *)

(* N/ *)

(* X-0-X *)

(* /b *)

(* X X X *)

(% ——————m— e m e m e *)

recursivelabell[myi_,myj_] := (

Print{"myi = ",myi," myj = ",myj," bigcount = ", ++bigcount,"” Memory In Use =

v MemoryInUse[]];

(% —mm o oo m S o moommmT oo *)
(* Need to change coordinate systems between matrix notation and curve with *)
(* {x,y) = (0,0) at center of matrix at thegrid[[im}][[im]] *)
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correctedilthisj_]:=im-thisj+1;
correctedj[thisi_]:=im+thisi+1;

(F e *)

(* Define this grid point as an interior, perhaps change to fill later *)

(F mmm e *)
thegrid[[correctedilmyj],correctedjlmyil]l]=1;

(*

Print["Grid pt ",correctedilmyjl," ",correctedj[myill;

*)

(*************************************************************************)

(x —=-=- *)

(* Right *)
(% -——-- *)
(* x=t, y=myj, myi<=t<=myi+1 %)
(k% ———— *)

theline={t ,myj*deltay,myi*deltax, (myi+1)*deltax};

Iflintersection[theline],

(k — - ——- - %)
(* This point is a fill since boundary intersects *)
(F m oo *)

thegrid[[correctedilmyj]l,correctedjlmyill]=2,

(f —— e - - *)
(* If not intersects, and next point is not defined then call it *)
(F e *)
If[thegrid[[correctedilmyjl]] [[correctedjmyi+1]]]==0,
recursivelabel [myi+1,myjl1]1];

(*************************************************************************)

(% —————mem_—— e *)
(* Right, Bottom *)
(% —m—mmmmmmm *)

theline={t, -t +(myi*deltax +myj*deltay),myi*deltax, (myi+1)*deltax};
Ifintersection[theline],

(% — e *)

(* This point is a fill since boundary intersects #*)
(e *)
thegrid[[correctedilmyjl,correctedjmyil]]=2,

(F e *)

(* If not intersects, and next point is not defined then call it *)
(F e = *)
If[thegrid[[correctedilmyj-111] [[correctedjmyi+11]1]==0,
recursivelabel [myi+1,myj-1]1];
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(**************************************************************************)

(¥ —————- *)
(* Bottom *)
(¥ ————-- *)

theline={myi*deltax,t,(myj—i)*deltay,myj*deltay};
If[intersection[theline],

(k —mmmmmm—m e — e — o — oo — oo oo *)

(* This point is a fill since boundary intersects *)
i *)
thegrid[[correctedilmyj],correctedjmyilil=2,

(# —m e e e oo C oS mSSooemo oo *)
(* If not intersects, and next point is not defined then call it *)
(% —mmmm e oo —osmosSosomoooomoTee *)

If[thegrid[[correctedi[myj—i]]][[correctedj[myi]]]==0,
recursivelabel [myi,myj-1]13;

(***************************************************************************)

(k ——=m——————— *)
(* Left, Bottom *)
(¥ ———————=———— *)

theline={t,t—(myi*deltax)+(myj*deltay),(myi-i)*deltax,myi*deltax};
If[intersection[theline],

(% —=———mmm e m—— e ——— oo m—e——s oo mees *)

(* This point is a fill since boundary intersects *)

(% =——=———mm—m = —— e —— oo ————o— oo oo emsm o *)
thegrid[[correctedi[myj],correctedj[myi]]]=2,

(% —mm—— e m e m e e — oo SmosTooTomommm T *)
(* If not intersects, and next point is not defined then call it *)
(¥ —mm e m oo oS osmSsooooTmom e *)

If[thegrid[[correctedi[myj—i]]][[correctedj[myi—1]]]==0,
recursivelabellmyi-1,myj-1]11;

(***************************************************************************)

(¥ ———— %)
(* Left *)
(* —-—= *)

theline={t,myj*deltay,(myi—1)*deltax,myi*deltax};
If[intersection[theline],

(* ——=m—— e mm—— s — o —mo o em—o oo *)

(* This point is a fill since boundary intersects *)

(% =—— e mm—mm—mem— e — o —m—— o e oo —ese *)
thegrid[[correctedi[myj],correctedj[myi]]]=2,

(# = o e oo o oo oS smsmo s oo e *)
(* If not intersects, and next point is not defined then call it *)
T it *)
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If[thegrid[[correctedilmyjll] [[correctedjmyi-1]11]1==0,
recursivelabel [myi-1,myj113;

(***************************************************************************)

G )
(* Left, Top *)
(* === *)

theline={t,—t+(myi*deltax)+(myj*deltay),(myi—i)*deltax,(myi*deltax)};
If[intersection[theline],

(F m e *)

(* This point is a fill since boundary intersects *)

(F e *)
thegrid[[correctedilmyjl,correctedjmyil]l]=2,

(K e *)
(* If not intersects, and next point is not defined then call it *)
(K e *)

If[thegrid[[correctedi[myj+1]]][[correctedj[myi—l]]]==0,
recursivelabel[myi-1,myj+111];

(***************************************************************************)

(¥ —== %)
(* Top *)
(¥ -== %)

theline={(myi*deltax),t, (myj*deltay), (myj+1)*deltay};
If[intersection[theline],
(F e *)

(* This point is a fill since boundary intersects *)

(F mmm e *)
thegrid{[correctedilmyj],corrected;jmyil]]=2,

(F e *)
(* If not intersects, and next point is not defined then call it *)
(o *)

If[thegrid[[correctedilmyj+1]1]] [[correctedjmyi]ll]==0,
recursivelabel [myi,myj+1]1];

(***************************************************************************)

(% == *)
(* Right, Top *)
(% == *)

theline={t,t-(myi*deltax)+(myj*deltay),myi*deltax, (myi+1)*deltax};
If[intersection{theline],
(F e *)

(* This point is a fill since boundary intersects *)

(F — *)
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thegrid[[correctedi[myj],correctedj[myi]]]=2,

(# —m—mmm oo o Cm— oo mmo oo mmmT oo *)
(*+ If not intersects, and next point is not defined then call it *)
Tttt *)

If[thegrid[[correctedi[myj+1]]][[correctedj[myi+1]]]==0,
recursivelabel [myi+1,myj+11]]

)

(K mmmm e oo SSSoSSSmmmmmmomooomeTTe *)
(* This procedure will test if theline intersects any of the specific curves ¥)
(K mm o m e TS osSooommommoom T *)

intersection{theline_J]:= (

intersect=False;

Dol

(k ——————————m——m e —— e m— oo —mm— oo *)
(* the x equation for parametrized curve *)
(* x=£(t), y=g(t), tstart <= t <= tend *)

(k =——mmm—m e m———m o —m— *)

curvexequation= listofcurves[[curvenumber]][[1]1];
curveyequation=  listofcurves[[curvenumber]][[21];
curvetstart= listofcurves[[curvenumber]][[3]];
curvetend= listofcurves[[curvenumber]][[4]1];

curvetmin=Min[curvetstart,curvetend];
curvetmax=Max[curvetstart,curvetend];

x2equation=theline[[1]];
y2equation=theline[[2]];
t2start= thelinel[[3]];
t2end= theline[[4]];

t2min=Min[t2start,t2end];
t2max=Max [t2start,t2end];

allts=Solve[{curvexequation==x2equation,curveyequation==y2equation},{t,curvet}];

Dol

thecurvet=curvet/. Flatten[allts[[tct]]];

thelinet=t/. Flatten[allts[[tctl]l];

If[ (( thecurvet >= curvetmin ) && ( thecurvet <= curvetmax ) &&
( thelinet >= t2min ) 2& ( thelinet <= t2max)) ,

intersect=True]

,{tct,1,Lengthlallts]}]

,{curvenumber,1,Length[listofcurves]}];

intersect

);
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(F e -—— —————————— *)
(* This section will, when given a 3 by 3 stencil of only interior and fill *)
(* points generate the set of polynomials that need solved, solve them and *)
(* provide a function for each fill point in the stencil *)
(* It uses the arrow information provided from the bigger 5 by 5 stencil *)
(* to put in the correct equatioms. *)
(* Work on this wording *)
(* mmmm e e *)
(¥ *)

(* The three interpolation functions that need cp, cu, and cv defined *)

(¥ e~ *)

(F e e *)

(* maxind = # of grid points in one direction of stencil -1 *)

(* including derivative data for Hermitian data *)
It *)

(*

plx_,y_l:=Horner[Sum[cp[i3,j3] x~i3 y~j3 , {j3,0,maxind},{i3,0,maxind}1];
ulx_,y_]:=Horner[Sum[cu[i3,j3] x"i3 y°j3 , {j3,0,maxind},{i3,0,maxind}]1];
v[lx_,y_]:=Horner[Sum[cv[i3,j3] x"i3 y~j3 , {j3,0,maxind},{i3,0,maxind}]1];

*)

(¥ *)
(* This procedure will compute the normals for a boundary curve specified in *)
(* listofcurves *)
(F *)
(* Returns the unit normal vector on curve # curvect at position *)
(* t=thevalueofcurvet *)
(F mm *)
computenormals[curvect_,thevalueofcurvet_] := (

(K e *)

(* Get x and y functions of parameter curvet for a particular curve *)

(F e . *)
curvexequation=listofcurves[[curvect]][[1]];
curveyequation=listofcurves[[curvect]] [[2]];

(F *)

(* Compute the derivatives of the x and y functions with respect to the *)

(* parameter *)

(F *)

yderiv=D[curveyequation,curvet] /. {curvet -> N[thevalueofcurvet]};
xderiv=D[curvexequation,curvet] /. {curvet -> N[thevalueofcurvet]};
If((xderiv==0 && yderiv==0), Print["Error in normal vector slope"],
If[xderiv!=0 && yderiv!=0 &&

Not[xderiv === ComplexInfinity] &&
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Not[yderiv === ComplexInfinity] ,

(¥ ———————m—— e *)

(* Tangential slope direction *)

(% =———————m e *)
tslope=yderiv/xderiv;

(% —————m—mm—— *)

(* Normal slope direction *)

(k ————m—mm e *)

nslope=-xderiv/yderiv;

un={ 1/(i+nslope~2), nslope/(1+nslope~2) };
(*

ut [curvect]={ 1/(1+tslope~2), tslope/(1+tslope™2) };
*)

(k —————mmmm— *)

(* Vertical Tangent *)

(¥ ———————=———————- *)

If[xderiv==0 || yderiv === ComplexInfinity,
un = {1,0};

(*

ut [curvect] := {0,1};

*)

15

(k ————mm——m *)

(* Horizontal Tangent *)

(% ——————mm *)

If[yderiv==0 || xderiv === ComplexInfinity,
un = {0,1};

(*

ut[curvect] := {1,0};

*)

1

135
e

(* Return the unit normal vector of the curve at the correct location on the

i
un=un/Sqrt [un[[11]1-2+un[[2]]1"2];
un /. { curvet -> thevalueofcurvet }

);

(H mmmmm e oo CmoSS oo somoSooooTTeTTT
(* This procedure will compute the tangents for a boundary curve specified in
(* listofcurves

(¥ = m oo oSS SSe oS SoomT T
(* Returns the unit tangent vector on curve # curvect at position

{(* t=thevalueofcurvet

(K mmm eSS C oSS Soo o mmmmomoT oo

(h mmmmm e eSS mSSo oo oomommoom oo *)
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(* Get x and y functions of parameter curvet for a particular curve *)
(e *)
curvexequation=listofcurves[[curvect]][[1]];
curveyequation=listofcurves{[curvect]] [[2]];

(F e o *)
(* Compute the derivatives of the x and y functions with respect to the *)
(* parameter *)
(F e *)

yderiv=D[curveyequation,curvet] /. {curvet -> N[thevalueofcurvet]};
xderiv=D[curvexequation,curvet] /. {curvet -> N[thevalueofcurvet]};
If((xderiv==0 && yderiv==0), Print["Error in normal vector slope"],
If[(xderiv!=0 && yderiv!=0 &&

Not[xderiv === ComplexInfinity] &&
Not [yderiv === ComplexInfinity] ,
(% ——— el *)
(* Tangential slope direction *)
(% = *)
tslope=yderiv/xderiv;
(% ——— e *)
(* Normal slope direction *)
(k ———m el *)

nslope=-xderiv/yderiv;
un={ 1/(1+nslope”2), nslope/(1+nslope~2) };
ut={ 1/(1+tslope~2), tslope/(1+tslope~2) };

(% ——— e *)

(* Vertical Tangent *)

(% ——— e *)

If[xderiv==0 || yderiv === ComplexInfinity,

un = {1,0};

ut = {0,1};

1

(¢ = *)

(* Horizontal Tangent *)

(% ————m e *)

If[yderiv==0 || xderiv === ComplexInfinity,

un = {0,1};

ut = {1,0};

1

11

(F e *)
(* Return the unit tangent vector of the curve at the correct location on the *)
(* curve *)
(% ==~ - e —————— *)

ut=ut/Sqrtut[{1]]2+ut[[2]]"2];
ut /. { curvet -> thevalueofcurvet }

)

NASA/TM—1999-209182



(K mmm o oSS SomSoo o STSSSmoomosomoommemTTe *)
(* This procedure creates a single equation for each fill in a given *)
(*# 2 by 2 stencil. These equations are evaluated then at each time step *)
(* to solve for the fills. *)
T *)
(* It needs the mapped location for each fill point, and the surface normal *)
(* and tangent at that point *)
(F —mmmm e oSS SSSmSSsoomoooToTmmmT e *)

computesolutionsforall[standardmatrixpositionsin2by2grid_,
standardphysicalpositionsin2by2grid_,
physicalpositionsin2by2grid_,
normalsin2by2grid_,
tangentsin2by2grid_J:=(
Print["In computesolutionsforall
",standardmatrixpositionsin2by2grid,standardphysicalpositionsin2by2grid,physical
positionsin2by2grid,normalsin2by2grid];
Clear[cp,p,dpn,x,y,1hs,rhs];

(# —mmmm e oSS oo SSSSoomoosoTmTmmmmmm T *)
(* Get the global physical coordinates of the center of the standard *)
(* 2 by 2 stencil *)
(* Will use it to convert global physical coordinates to local physical *)
(* coordinates *)
(# oo oSS SSSSm oo ommooTmmTTmmmm *)

centerphysicalx=standardphysicalpositionsianngrid[[1,1]][[1]]+(deltax/2);
centerphysicaly=standardphysicalpositionsiany2grid[[1,1]][[2]]—(deltay/2);
maxind=csize(degree+i)-1;

i=standardmatrixicoord;

j=standardmatrixjcoord;

(% —mmmmmmm— e mmmm e *)

(* Mathmetica Matrix Indexing *)

(% —=—=m——mm—mm—m—m——— e *)

(% —————mm e m o *)

(4 L,] ) G Lj*D *)

(¢ (i*1,5 ) (i+1,3+1) %)

(% ———————m———m———m e *)

(* —=—m—m—m—mm e — e —— e ———me oo *)

(* Dsculatory Formulation of Interpolant *)

(¥ ———————mmmm—mm——m————— oo —m————— oo *)

T ettt *)

(* The array indeces for FORTRAN or the matrix indeces for Mathematica *)

(* of the particular interior points that are required *)
e *)

(* Find which points are known and unknown, the unknown points become the *)
(* unknown interpolation coefficients/variables to be solved later. *)
(K mmm e S SSSSSomoomomTmTmTm T *)
(# This can be either a variable or a data element from the grid *)

(k e m oo Smoo oo oSommsomoo o *)

Clear[“pvari*","uvari*“,"vvari*“];
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(F m e *)
(* Assign a dummy variable to each Hermitian grid point element that will *)
(* remain this dummy variable if its undefined or will be reassigned if it *)

(* has a definition or is known *)
(K e *)
(*

pvarordata=Table[Table[Table[Table[Symbol["pvari"<>ToString[i]<>"j"<>ToString[j]
<>“dx"<>ToString[dx]<>"dy"<>ToString[dy]],{dy,O,degree}],{dx,O,degree}],{j,1,2}]
,{1,1,23];
uvarordata=Tab1e[Table[Table[Table[Symbol[“uvari”<>ToString[i]<>“j"<>ToString[j]
<>"dx"<>ToString[dx]<>“dy"<>ToString[dy]],{dy,o,degree}],{dx,O,degree}],{j,1,2}]
{1,1,23]1;
vvarordata=Tab1e[Table[Table[Table[Symbol[“vvari“<>ToString[i]<>“j”<>ToString[j]
<>”dx"<>ToString[dx]<>"dy"<>ToString[dy]],{dy,O,degree}],{dx,O,degree}],{j,1,2}]
,{1,1,2}];

*)

Do[Do[Do[Do[
pvarordata[i,j,dx+1,dy+1]=Symbol[”pvari”<>ToString[i]<>"j"<>ToString[j]<>"dx”<>T
oString[dx]<>"dy"<>ToStringldyl];
uvarordata[i,j,dx+1,dy+1]=Symbol["uvari”<>ToString[i]<>"j"<>ToString[j]<>"dx"<>T
oString[dx]<>"dy"<>ToString[dy]l];
vvarordata[i,j,dx+1,dy+1]=Symbol["vvari"<>ToString[i]<>"j"<>ToString[j]<>"dx"<>T
oString [dx]<>"dy"<>ToString[dy]]
,{dy,0,degree}],{dx,0,degree}],{j,1,2}]1,{i,1,2}];

(K e *)
(* This will contain the list of unknown Hermitian data elements that needs *)
(* solved. *)
(F *)

variablelistp={};
variablelistu={};
variablelistv={};

(K *)
(* Loop through all four grid points in this stencil to determine interior )
(* or £ill. If interior, then all of its Hermitian data is already known *)
(* and simply needs assigned. Or if a fill that has been recycled or filled *)
(* already then again simply assign this information now *)
(K m e *)
Do[Do[

standardmatrixicoord=standardmatrixpositionsin2by2grid[[matrixict,matrixjct]][[1
11
standardmatrixjcoord=standardmatrixpositionsin2by2grid[[matrixict,matrixjct]] [[2

11;

(F e L *)
(* If this stencil point is an interior, then insert it into Lagrangian *)
(* Formulation *)
I *)
(* Or if a fill point is being considered as an interior point (ie. recycled) *)
(K e *)
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If[thegrid[[standardmatrixicoord,standardmatrixjcoord]]==1 |l
Length[arrowgrid[[standardmatrixicoord,standardmatrixjcoord]]]>2,

(F mmm o e S S SsmmmmomommmeT e *)
(*+ The data is known so loop through all Hermitian data and assign it *)
(¥ —mmm e oo - oSS SSsmooo o oo *)
Do[Dol

pvarordata[matrixict,matrixjct,ldx+1,ldy+1]=gridp[[standardmatrixicoord,standard
matrixjcoord,ldx+1,1dy+1]1];

uvarordata[matrixict,matrixjct,ldx+1,1dy+1]=gridu[[standardmatrixicoord,standard
matrixjcoord,ldx+1,1dy+1]];

vvarordata[matrixict,matrixjct,ldx+1,ldy+1]=gridv[[standardmatrixicoord,standard
matrixjcoord,ldx+1,1dy+1]]

,{1dx,0,degree}]

,{1dy,0,degree}]

(F —mmm eSS esooooTommTeTT *)
(*+ If this stencil point is a fill point, then assign a variable to it *)
(* This variable symbol will be used in the Solve step later *)
(F mmmm e oSS ossommomo oo *)
Do[Do[

AppendTo[variablelistp,pvarordata[matrixict,matrixjct,ldx+1,ldy+l]];
AppendTo[variablelistu,uvarordata[matrixict,matrixjct,ldx+1,1dy+1]];
AppendTo[variablelistv,vvarordata[matrixict,matrixjct,ldx+1,1dy+1]]
,{1dx,0,degree}]

,{1dy,0,degree}]

]

,{matrixict,1,2}]

,{matrixjct,1,2}];

(*

Print[variablelistp,variablelistu,variablelistv];

Print["plx,y] = ", InputForm(plx,y11];

wait=Input ["Press Enter"];

Print["ulx,y] = ",InputFormlulx,y]1];

wait=Input["Press Enter"];

Print["vIx,y] = ", InputForm[v([x,yl1];

wait=Input[“Press Enter"];

*)

Tttt *)
(* Now need to substitute in the values for each fill point into the *)
(* boundary condition equations already formed. *)
(* Supply the normx, normy, x, y values for the mapped location of fill *)
Tt *)
(¥ —==m—=m——mm— e —— oo —mm——— oo —m oo oo *)

(* Loop through all four points in 2 by 2 stencil *)
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pequationlist={};
uandvequationlist={};

Do[Do[

(% — o *)

(* Pressure Wall Boundary Condition *)

(F —— e *)

(F e *)
(* The actual physical coordinates for either mapped fills or unmapped *)
(* interiors *)
(F m e *)

xcoord=physicalpositionsin2by2grid[[matrixict,matrixjct]][[1]];
ycoord=physicalpositionsin2by2grid[{matrixict,matrixjct]][[2]];

(F . *)
(* The actual physical coordinates converted into local coordinates *)
(F m e *)

xdiff=Abs[N[(xcoord-centerphysicalx)]];
ydiff=Abs[N[(ycoord-centerphysicaly)l];
If[centerphysicalx > xcoord, localxcoord=-xdiff, localxcoord=xdiff];
If[centerphysicaly > ycoord, localycoord=-ydiff, localycoord=ydiff];

(F *)
(* The array indeces for FORTRAN or the matrix indeces for Mathematica *)
(* of the particular interior points that are required *)
(e e *)

standardmatrixicoord=standardmatrixpositionsin2by2grid[[matrixict,matrixjct]][[1

11;

standardmatrixjcoord=standardmatrixpositionsin2by2grid[{matrixict,matrixjctl][[2

11;

(*
Print["normalsin2by2grid
“,matrixict,matrixjct,normalsin2by2grid[[matrixict,matrixjct]]];

*)

(F e *)
(* Using Osculatory Formulation, a set of equations for each fill, %)
(K *)

If[thegrid[[standardmatrixicoord,standardmatrixjcoord]]==2 &&
Lengthl[arrowgrid[[standardmatrixicoord,standardmatrixjcoord]]1]==2,
(*

Clear [normx,normy];
normx=normalsin2by2grid[[matrixict,matrixjct]][[1]];
normy=normalsin2by2grid[[matrixict,matrixjct]][[2]];

*)

(*
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normx=normxtemp[matrixict,matrixjct];
normy=normytemp[matrixict,matrixjctl;

*)

(*
tangx=—normy;
tangy=normx;

*)

(*
tangx=tangentsin2by2grid[[matrixict,matrixjct]][[1]];
tangy=tangentsin2by2grid[[matrixict,matrixjct]][[2]];
*)

(*
x=localxcoord;
y=localycoord;
*)

(*
x=xcoord2[matrixict,matrixjct];
y=ycoord2[matrixict,matrixjctl;

*)

(F = mmm e e eSS oS —s ST ososoommoommmee *)
(* The normx,normy,x,y are now defined so form the set of equations required *)
(* for this fill point *)
(F o m o eSS C o SSmSooomoomo T Emm e *)

newderpntaulist=derpntaulist /. {x->localxcoord,y->localycoord,
normx->normalsin2by2grid[[matrixict,matrixjct]1([1]],
normy—>normalsin2by2grid[[matrixict,matrixjct]][[2]],
tangx—>—normalsin2by2grid[[matrixict,matrixjct]][[2]],
tangy->normalsin2by2grid[[matrixict,matrixjct]][[1]]};
newderuntaulist=deruntaulist /. {x->localxcoord,y->localycoord,
normx->normalsin2by2grid[[matrixict,matrixjct]lI[[1]],
normy->normalsin2by2grid[[matrixict,matrixjct]][[2]],
tangx—>—normalsin2by2grid[[matrixict,matrixjct]][[2]],
tangy—>normalsin2by2grid[[matrixict,matrixjct]][[1]]};
newdervntaulist=dervntaunlist /. {x->localxcoord,y->localycoord,
normx->normalsin2by2grid[[matrixict,matrixjctl] [[1]],
normy->normalsin2by2grid[[matrixict,matrixject]][[2]1],
tangx->-normalsin2by2grid[[matrixict,matrixjct]][[2]],
tangy—>normalsin2by2grid[[matrixict,matrixjct]][[1]]};

Print["Using £ill equations at localxcoord and localycoord :'",localxcoord,"” and
", localycoord," with normal (", normx,normy,")"];
AppendTo[pequationlist,newderpntaulist];
AppendTo[uandvequationlist,newderuntaulist];
AppendTo[uandvequationlist,newdervntaulist];

]

,{matrixict,1,2}]
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,{matrixjct,1,2}];

(ke ook ok oo ok o ok oo koo ok oKk )

(* p7 p8 p9 *)

(* p4 p5 p6 *) (* Point location definition *)
(* p1 p2 p3 *)

(oo ok ok sk ok )

Clear[h,i,j,cp,cu,cv];

maxind=csize(degree+1)-1;
pvariables=Flatten[variablelistp];
uandvvariables=Flatten[{variablelistu,variablelistv}];

pequationlist=Flatten[pequationlist];
uandvequationlist=Flatten[unandvequationlist];

(F m e *)
(* Solve for all of the spatial interpolant coefficients %)
(F e e *)

pmatvec=LinearEquationsToMatrices[pequationlist, pvariables];
pmatrix=pmatvec[[1]];

prhs=pmatvec[[2]];
uandvmatvec=LinearEquationsToMatrices[uandvequationlist, uandvvariables];
uandvmatrix=uandvmatvec[[1]];

nandvrhs=uandvmatvec[[2]];

(*

wait=Input["Wait1"];

*)

(*

psings=Flatten[SingularValues[pmatrix]];
uandvsings=Flatten[SingularValues[uandvmatrix]];
pconditionnumber=Max[psings]/Min[psings];
uandvconditionnumber=Max[uandvsings]/Min[uandvsings];

pdet=Det [pmatrix];

uvandvdet=Det [uandvmatrix];

Print["P Matrix Condition #:",pconditionnumber,” and determinant 1", pdet];
Print["UandV Matrix Condition #:'",uandvconditionnumber,”" and determinant
;" ,uandvdet] ;

*)

(% —m— e *)

(* The vector of coefficients *)

(% ——— e *)

(*

pcoef=LinearSolve[pmatrix,prhs];
uandvcoef=LinearSolve[uandvmatrix,uandvrhs];

*)

(F m e
(* Find inverse of p matrix, handles poorly conditioned systems better than
(* linearsolve
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(*

wait=Input["Wait2"];

*)

(#*

pinvmatrix=Inverse[pmatrix];

pcoef=Collect [pinvmatrix . prhs,pressurel_,_,_,_1];
*)

(*

pcoef=LinearSolve[pmatrix,prhs];

*)

pcoef=solvesystemincnofc[pmatrix,prhs];

(% ———————mm————m e ——— e *)
(* Find Inverse of uandv matrix *)
(% =——m— e mm e *)
(%
uvandvinvmatrix=Inverse[uandvmatrix];
uvandvcoef=Collect[uandvinvmatrix .

uandvrhs, {uvelocity[_,_,_,_1,vvelocity[_,_,_,_1}]1;
*)

(*

uandvcoef=LinearSolve[uandvmatrix,uandvrhs];

*)

uandvcoef=solvesystemincnofc[uandvmatrix,uandvrhs];

Clear [aside,bside];
makeequal[aside_,bside_]:= aside=bside;

(% —————————m——m————— o - ———m—————s *)
(* Set the p coefficients with solution *)
(k =—m—mm e m o —m e *)

ppairs = {pvariables, pcoef};
Apply[makeequal,ppairs];

(¥ ———=m——m— - mm———mm———— oo —mm——o— *)
(* Set the u and v coefficients with solution *)
(k% ——mm— e mm s —— oo *)

uandvpairs = {uandvvariables, unandvcoef};
Apply[makeequal,uandvpairs];

(K = o TS S SSSsmosmmmmTmmTe *)
(*Produce equation for each fill point, so that it may be filled at each *)
(* time step *)
(K o e S S— oo oS SSSooooommTTmTeT *)
(* the equations will be absolute and in terms of matrix coordinates *)
(k= o m S CCSo o SSsosoooommomm T *)
(*

solutionmatrix=Table[{0,0,0},{ii,1,2},{jj,1,2}];

*)

solutionmatrix=Tab1e[Table[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{va
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ret,1,3}],{41,1,2}],4{jj,1,2}];

Do[Do[

Do[Do[

(F *)
(* The unmapped standard physical location of a typical 2 by 2 stencil *)
L *)

standardxcoord=standardphysicalpositionsin2by2grid[[matrixi,matrixj]]1[[1]];
standardycoord=standardphysicalpositionsin2by2grid[[matrixi,matrixj]][[2]];
localphysicalx=(standardxcoord-centerphysicalx);
localphysicaly=(standardycoord-centerphysicaly);

(F — e o *)
(* The p solutions for all derivatives *)
I el T T ——— *)

newsymbolp=Symbol["pvari”<>ToString[matrixi]<>"j"<>ToString[matrixj]<>"dx"<>ToSt
ring[ldx]<>"dy"<>ToString[1dyl];
solutionmatrix[[matrixi,matrixj,1,ldx+1,1dy+11]=
pvarordata[matrixi,matrixj,1dx+1,1dy+1];

(%

newsymbolp;

Simplify[D[p[x,y],{x,1dx},{y,1dy}] /.

{x-> localphysicalx, y-> localphysicalyl}];

*)

R N ——— *)

(* The u solutions for all derivatives *)

I e ——— *)
newsymbolu=Symbol["uvari”<>ToString[matrixi]<>"j"<>ToString[matrixj]<>"dx"<>ToSt
ring[1dx]<>"dy"<>ToString[1dy]l];
solutionmatrix[[matrixi,matrixj,2,1dx+1,ldy+1]]=
uvarordatal[matrixi,matrixj,ldx+1,1ldy+1];

(%

newsymbolu;

Simplify[D[ulx,y],{x,ldx},{y,1dy}] /.

{x-> localphysicalx, y-> localphysicaly}];

*)

(F *)
(* The v solutions for all derivatives *)
R Ly —— *)

newsymbolv=Symbol["vvari"<>ToString[matrixi]<>”j"<>ToString[matrixj]<>”dx"<>ToSt
ring[1dx]<>"dy"<>ToString[ldyl];
solutionmatrix[[matrixi,matrixj,3,ldx+1,1dy+1]]=
vvarordatalmatrixi,matrixj,ldx+1,1dy+1];

(*

newsymbolv;

Simplify[D[v[x,y],{x,1ldx},{y,1dy}] /.

{x-> localphysicalx, y-> localphysicaly}];

*)

,{1dx,0,degree}]

,{1dy,0,degree}]
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,{matrixi,1,2}]
,{matrixj,1,2}];
Clear[x,y];
solutionmatrix

);

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

(*
(*
(*
(*

This procedure creates a single equation for each fill in a given 2 by 2

stencil
These equations are evaluated then at each time step to solve for the

It needs the mapped location for each fill point, and the surface normal

at that point
And the surface tangent at that point

This procedure will scan entire grid looking for £ills *)
And assigning arrows to them *)

definearrows2:= (

(F mmm o e S o oSS SSsoooomo oo *)
(* Get list of fills locations sorted according to number of £ills in its *)
(* spatial interpolation stencil. *)
(* Will contain only the corners of the stencils *)
(# ——mm ST S oo oo oSmomomTomomem oo *)
fillposlist=minimizeboundary2;
sttt *)

(* Loop through all the fill points, in the correct order of course *)
Tt *)
While[Length[fillposlist]>0,
s *)

(* This is the location of the fill point in matrix coordinates *)

(k ——mmmm—mm e e oo oo oo oo mee e *)

matrixi=fillposlist[[111([11];
matrixj=fillposlist[[111[[2]];
quadtouse=fillposlist [[1]11[[31];

Print["Working on " matrixi," ",matrixj," “,quadtouse];
(% —=——— e — e — e — oo oo o oo *)
(*# Get the 7 by 7 stencil with the fill in the center *)

(*

—————————————————————————————————————————————————— *)
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stencil7by7=SubMatrix[thegrid,{matrixi-3,matrixj-3},{7,7}]1;

(F mmm e *)
(* Will use 4 different mapping algorithms, depends upon quadrant in use *)
(* Need to insure stencil expands for CFL stability *)
(F *)

themapping=getmapping[stencil7by7,quadtouse];

If[Not [mappingsuccessful],

Print["No mapping found at ",matrixi," ",matrixj];

Print["Later let code try to use another neighboring stencil for mapping"];
Quit;

1

(G e U — ——————————— e *)

(* Get list of fill points that are solved by this 2 by 2 system *)

(F e *)
listofdonefills=computedonefills[matrixi,matrixj,stencil7by7,quadtouse];
(% — e *)
(* Those fills not already in correctfillordering but should be now *)
(F mmm *)

undonelistofdonefills =

IntegerPart [Complement [listofdonefills,correctfillorderingl];
AppendTo[correctfillordering,undonelistofdonefills];
correctfillordering=IntegerPart[Partition[Flatten[correctfillordering],2]];

(F m e *)
(* Need to remove from dolist those fills that are solved with this 2 by 2 *)
(* spat. int. *)
(F *)
Dol

fillposlist=DeleteCases[fillposlist,{IntegerPart[listofdonefills[[ct]][[11]],
IntegerPart[listofdonefills[[ct]][[2]1]],m_}];
,{ct,1,Length[listofdonefills]}];

(F — e *)
(* assign the mapping to arrowgrid *)
(% — e *)

If[quadtouse==1,toplefti=matrixi; topleftj=matrixjl;
If[quadtouse==2,toplefti=matrixi-1; topleftj=matrixjl;
If[quadtouse==3,toplefti=matrixi-1; topleftj=matrixj-1];
If(quadtouse==4,toplefti=matrixi; topleftj=matrixj-1];

(F e~ *)

(* If no arrow assigned, then assign it, otherwise use current arrow instead *)

(* And recycle the fill data by changing its arrow to {0,0} *)
(# To remove instability *)
(K m e *)
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Do[Do[

If[Length[arrowgrid[[toplefti+iii,topleftj+jjj]]]==1,
AppendTo[arrowgrid[[toplefti+iii,topleftj+jjjll,

themapping[[iii+1,3jj+111],

(F —mmm e e eSS SS e oommmm o *)

(* If already has an arrow, consider it an interior point for this stencil *)

(* Add a {0,0} in third position to indicate it is now a recycled fill point *)

(* Can count the number of {0,0} in this list to see how many times it is *)
(* recycled *)
(# mmm eSS Smmmsse oo oo *)

AppendTo[arrowgrid[[topleftit+iii,topleftj+jjjll, {0,03}]1;
I
,{ii1,0,1}]
,4333,0,131;

(*

Print["toplefti = ",toplefti,topleftj,themapping];
*)

AppendTo[topleftlist,{toplefti,topleftj}];

(% ————m—m—m—— e — e — e — *)
(* Now assign fill solutiomns at these points, *)
(* need to get boundary intersection and normals *)
(* first. Will use the global grid coordinates just determined, *)
(* and the matrix of arrow *)
(* directions in correctlyplacedarrows, if the grid point is an interior, *)
(* do not assign it *)
(* if the grid point is already an assigned £ill point, do not reassign it *)
it *)
(*

the2by2solutionsmatrix=get2by2solutionmatrix[toplefti,topleftj,correctlyplacedar
rows];

*)
the2by2solutionsmatrix=get2by2solutionmatrix[toplefti,topleftj,themapping];

(*

Print["the2by2solutionsmatrix=",the2by2501utionsmatrix];

*)

(*

te=Input ["Press Enter"];

*)

(H mmm oSS mm o mmmommoo e *)
(* Only place a solution for a fill if it is undefined, *)
(* this way the first stencil solution *)
(* that applies to a fill is used only. *)
(F m oS So oS msSSoemommm oo *)
Do[Dol
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(*

1dx=0;1dy=0;

*)

Do[Dol
If[fillsolutiongrid[[toplefti+iii~1,topleftj+jjj-1,1,1dx+1,1dy+1]]=="U",
(k¢ ——mmm e *)

(* For now use no derivative data *)

I T — *)

(% —--om- *)

(* P DATA *)

G *)

fillsolutiongrid[[toplefti+iii-1,topleftj+jjj-1,1,1dx+1,1dy+1]]=Chop[the2by2solu
tionsmatrix[[iii,jjj,1,1dx+1,1dy+111]1;

(% ———-—- *)

(* U DATA *)

(¥ —=———- *)
fillsolutiongrid[[toplefti+iii-1,topleftj+jjj-1,2,1dx+1,1dy+1]]=Chop[the2by2solu
tionsmatrix[[iii,jjj,2,ldx+1,1dy+1]1]];

(% —=---- *)
(* V DATA *)
(% —---m- *)

fillsolutiongrid[[toplefti+iii-1,topleftj+jjj-1,3,1dx+1,1dy+1]1]=Chop[the2by2solu
tionsmatrix[[iii,jjj,3,1dx+1,1dy+11]]]

,{ldx,0,degree}]

,{1dy,0,degreel}]

,{111,1,23}]

,{333.1,23];

1;

(F mm *)

(* Create the list of fills that are not needed and should not be included *)

(* in error calculatioms. *)

(F *)
ignorelist=Complement[Position[thegrid,2],correctfillordering]

)i

(F e *)
(* This procedure will return a set of 4 vectors showing the arrow or *)
(* direction for each of the 4 grid points to be mapped to. *)
(* If they are an interior point *)
(* they do not get mapped, so assigned a none or {0,0} vector *)
(F e *)

getmapping [the7by7mat_, lquadtouse_] :=(
17by7mat=the7by7mat;

mappingsuccessful=False;
pinotfound=False;
p2notfound=False;
p3notfound=False;
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p4notfound=False;

(K mmmmmm e oo oo ooomSmeoooomoooEmTEmmTT *)
(* Generate all of the possible locations to map to in local coordinates *)
(* centered at the grid point being mapped *)
(K —mmmm e oo ooSoooooSSoooooooSoToTmmTT *)
directionlist={};

Do[Dol

AppendTo[directionlist,{N[Sqrt[ict‘2+jct‘2]],ict,jct}]

,{ict,-2,2}]

,{ject,-2,2}];

directionlist=Comp1ement[directionlist,{{0,0,0}}];

e *)

(* Each of the 4 grid points is only allowed to be mapped in a way *)

(* that expands the stencil for CFL stability *)
Tt *)
p1directionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x<=0 && y>=011;
p2directionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x<=0 && y<=01]];
p3directionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /i x>=0 && y<=011;
p4direction1ist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x>=0 && y>=011;
(F e e oo CSoS oo SSTSSomomomTmETTmmmeTT *)
(* Each of the 4 grid points needs to find the first B it can using its *)
(* directionlist which is presorted to minimize distance *)
(K —mmm e oo Seo oSS o SooSSooomomoooooTTETTe *)
(¥ —mmmmmm oo —oo oo SSSoSoomoommmmTmeTemT *)
(*+ Find where the topleft of the 2 by 2 stencil is in relation to the %)
(* 7 by 7 stencil. *)
(# =mmm o m oo oS SSSSomoooomTmTmmm e *)
If[1quadtouse==1, matrixtoplefti=4; matrixtopleftj=4];

If[1quadtouse==2, matrixtoplefti=3; matrixtopleftj=4];
If[1gquadtouse==3, matrixtoplefti=3; matrixtopleftj=3];
If[1quadtouse==4, matrixtoplefti=4; matrixtopleftj=3];

T *)
(* Change the 1 to a 5 if inside the 2 by 2 stencil *)
(% ——mmmm—mmmm o - ——— oo —s—oes *)
Do[Dol

If[l?by?mat[[matrixtoplefti+iict,matrixtopleftj+jjct]]==1,
17by7mat[[matrixtoplefti+iict,matrixtopleftj+jjct]]=5];

,{iict,0,13}]

,{jjct,0,1}1;

(% —---m- *)

(* p3 p2 *)

(* p& p1 %)
(*===-_-==================================================================* )
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(* MAP P1 *)

(F e . *)
(* Find the first B to map to using the ordered direction list *)
(F e *)
pldirct=1;

p1={0,0};

plloci=matrixtoplefti+i;

pllocj=matrixtopleftj+1;

If[17by7mat [[piloci,pllocjll==2,

pinotfound=True;

(ke *)
(* Loop through all permissible directions until a suitable map is found *)
(F o e *)
While[pinotfound &% pidirct<=Length[pidirectionlist],

mag =pidirectionlist[[pidirct]][[1]];
xoffset=pildirectionlist{[pidirct]]([2]];
yoffset=pidirectionlist[[pidirct]][[3]1];

row=Length[Cases[17by7mat [[piloci-yoffset]],5]];

column=Length[Cases [Map[#[[pilocj+xoffset]]&,17byTmat],5]];

(e *)
(* Is the offseted grid point a boundary point and *)
(* Test to be sure that no more than one other grid point is assigned to the *)
(* row or column *)
(o *)

If[17by7mat [[plloci-yoffset,pllocj+xoffset]]==0 && row<=1 && column<=1,
pinotfound=False;

(% —m e o *)

(* Define normalized arrow direction *)

I e ——— *)
pi={xoffset,yoffset}/mag;

(¥ *)
(* Assign a 5 indicating a mapping to this location *)
(F e~ *)
17by7mat [[p1loci-yoffset,pllocj+xoffset]]=5;

1

pldirct++;

1;

(* MAP P2 *)
(¥ e *)

(* Find the first B to map to using the ordered direction list *)

(H *)
p2dirct=1;

p2={0,0};

p2loci=matrixtoplefti;

p2locj=matrixtopleftj+i;

I£[17by7mat [[p2loci,p2locjl]==2,

p2notfound=True;

(F *)

(* Loop through all permissible directions until a suitable map is found *)
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(F mmmm o oo oSmmooommomo T *)
While[p2notfound && p2dirct<sLength[p2directionlist],
mag =p2directionlist[[p2dirct]][[1]1];

xoffset=p2directionlist[[p2dirct]]1[[2]];
yoffset=p2directionlist[[p2dirct]] [[3]];
row=Length[Cases[17by7mat[[p2loci—yoffset]],5]];
column=Length[Cases[Map[#[[p2locj+xoffset]]&,17by7mat],5]];

(F e ST —SSSsssoomomoTmmTTTT *)
(* Is the offseted grid point a boundary point and *)
(* Test to be sure that no more than one other grid point is assigned to the *)
(* row or column *)
(¥ mmmmmmmm e eSS oS oooooSSooooTommemT T *)

If[17by7mat[[p2loci—yoffset,p2locj+xoffset]]==0 && row<=1 &% column<=1,
p2notfound=False;

(¥ ————m—mmm—mm e ————— e m *)

(* Define normalized arrow direction *)

(¥ ————m———mmmmm——— e mmm—m e *)
p2={xoffset,yoffset}/mag;

(% —mmmmm—mm e oo —m oo oooo oo *)
(* Assign a 5 indicating a mapping to this location *)
(¥ —=m—mmmmmmm e m e m o —————o oo *)
l7by7mat[[p2loci—yoffset,p2locj+xoffset]]=5;

1;

p2dirct++;

1

I

(*===================================================:==================*)
(* MAP P3 *)

(h —mmmmmm oo oo oo oo oSS msmmmee s *)
(* Find the first B to map to using the ordered direction list *)
(# —mmm e oo oS *)
p3dirct=1;

p3=1{0,0};

p3loci=matrixtoplefti;

p3locj=matrixtopleftj;

1£[17by7mat [[p3loci,p3locjll==2,

p3notfound=True;

(# —mmm e oSS oSS moS oo moomo oo *)
(* Loop through all permissible directions until a suitable map is found *)
(# mmmm e oo Smmmso o omoomTm T *)
While[p3notfound && p3dirct<=Length[p3directionlist],

mag =p3directionlist[[p3dirct]][[1]];

xoffset=p3directionlist[[p3dirct]][[21];
yoffset=p3directionlist[[p3dirct]][[3]];
row=Length[Cases[17by7mat[[p3loci—yoffset]],5]];
column=Length[Cases[Map[#[[p31ocj+xoffset]]&,17by7mat],5]];

(F e eSS So oo oSS msosoemoTmTmeT *)
(* Is the offseted grid point a boundary point and *)
(* Test to be sure that no more than one other grid point is assigned to the *)
(* row or column *)
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(b e *)
If[17by7mat [[p3loci-yoffset,p3locj+xoffset]]==0 && row<=1 && column<=1,
p3notfound=False;

(F o *)

(* Define normalized arrow direction *)

(% o *)

p3={xoffset,yoffset}/mag;

(K o *)

(* Assign a 5 indicating a mapping to this location *)

(% ~m e *)

17by7mat [[p3loci~yoffset,p3locj+xoffset]]=5;

1;

p3dirct++;

1;.

1;

(*====:======:==========================================================*)
(* MAP P4 *)

(F *)

(* Find the first B to map to using the ordered direction list *)

(F m e *)
pédirct=1;

p4={0,0};

p4loci=matrixtoplefti+i;

p4locj=matrixtopleftj;

I1£f[17by7mat [[p4loci,pdlocjl]==2,

pinotfound=True;

(F e *)
(* Loop through all permissible directions until a suitable map is found *)
(e *)
While[p4notfound && p4dirct<=Length[p4directionlist],

mag =p4directionlist [[p4dirct]] [[1]];

xoffset=p4directionlist [[p4dirct]][[2]];

yoffset=pddirectionlist [[p4dirct]][[3]];

row=Length[Cases[17by7mat [[p4loci-yoffset]],5]1];
column=Length[Cases[Map[#[[p4locj+xoffset]]&,17by7mat],5]];

(F o *)
(* Is the offseted grid point a boundary point and *)
(* Test to be sure that no more than one other grid point is assigned to the *)
(* row or column *)
(e e *)

If[17by7mat [[p4loci-yoffset,pdlocj+xoffset]]==0 && row<=1 && column<=1,
p4notfound=False;
R T —— *)

(* Define normalized arrow direction *)

(F mmmmmm e *)
p4={xoffset,yoffset}/mag;

(F —— & *)
(* Assign a 5 indicating a mapping to this location *)
(F e *)

17by7mat [[p4loci-yoffset,pdlocj+xoffset]]=5;
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1,
padirct++;
1;
1;

notfoundlist={p1notfound,p2notfound,p3notfound,p4notfound};
If[Length[Cases[notfoundlist,True]]==O,mappingsuccessfu1=True];
If[pinotfound,Print["Did not find a mapping for pi"11;
If[p2notfound,Print["Did not find a mapping for p2"11;
If[p3notfound,Print["Did not find a mapping for p3"1];

If [panotfound,Print["Did not find a mapping for p4"11;

dirmat={{p3,p2},{p4,p1}};
dirmat

)

(k —==———m—mmm e mm e m o ———— oo

———————————————————————————————— *)

(* This procedure will return a set of 9 vectors showing the arrow or direction *)

(* for each of the 9 grid points to be mapped to.

If they are an interior point *)

(* they do not get mapped, so assigned a none or {0,0} vector *)

(¥ =m—mm—m—— e m oo oo

s8mapping [s8matrix_J:=(
Print["Calling s8mapping"];
(* p7 p8 p9 *)

(* p4 p5 p6 *)

(* p1 p2 p3 *)

(F —==m—m———mm——m——mm e —— s m——m— oo *)
(* Set of all normalized vector directions *)
(¥ ——m=m— e — s m e — oo ————m o *)
none = {0,0};

up = {0,1};

upright = {1/Sqrt[2],1/Sqrt[2]};
right = {1,0};

downright = {1/Sqrt[2],-1/Sqrt[21};
down = {0,-1};

downleft = {-1/Sqrt[2],-1/Sqrt[2]1};
left = {-1,0};

upleft = {-1/Sqrt[2],1/Sqrt(2]};

(* Try a 22.5 instead of 45 slope *)
(*

none = {0,0};

up = {0,1};

upright = {2/Sqrt[5],1/Sqrt[5]};
right = {1,0};

downright = {2/Sqrt[5],-1/Sqrt[6]};
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down = {0,-1};

downleft = {-2/Sqrt(5],-1/Sqrt[6]1};
left = {-1,0};

upleft = {-2/Sqrt[5],1/Sqrt[5]1};

*)

R —— *)
(* By s8 assumption, these do not vary #*)
(k —m e - *)

(* If not matching cases it is important to check for undefined *)
(* Unless a prescreening with stencil constraint tree was done already *)
pil=undefined;

p2=undefined;

p3=none;

p4=undefined;

p5=none;

p6=undefined;

p7=upleft;

p8=undefined;

p9=undefined;

(K o

(* Non-Double Fill Cases with fill using 5 by 5 info. only w/s8 modified
(* assumption

(¥ m o e

(* o . o *)
(% o *)

If[s8matrix[[3,4]]1==1 && s8matrix[[3,5]]==2 && s8matrix[[4,5]]==2,
pé=upright; p8=none; p9=upright J;

(* o *)
(* . *)

(* o 0 %)

If[s8matrix[[4,3]]==1 && s8matrix[[5,3]]==2 && s8matrix[[5,4]1)== s
pl=downleft; p2=downleft; p4=nonel;

S

(* Non-Double Fill Cases with interior using 5 by 5 info. only w/s8 modified
(* assumption

(F e

(* o . o *)

(* . %)

If(s8matrix[[3,4]]==1 && s8matrix[[3,5]]1==2 && s8matrix[[4,5]]1==1,
p6=none; p8=none; p9=upright 1;

(* 00 . %)

(* . )

If[s8matrix[[3,4]11==2 && s8matrix[[3,5]11==1 && s8matrix[[4,5]]==1,
p6=none; p8=upleft; p9=nonel;

(*x 0 . . %)
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1f[s8matrix[[3,4]]1==1 && s8matrix[[3,511==1 && s8matrix[[4,5]1]==1,
pé=none; p8=none; p9=nonel;

(* o *)
(x . *)
(* 0o . %)

If[s8matrix[[4,3]]==1 &&

s8matrix[[5,3]1]1==2 && s8matrix[[5,4]1]1==1,

pl=downleft; p2=none; p4=nonel;

(* o *)
(* o *)
(x . . %)

If[s8matrix{[4,3]]==2 &&

s8matrix[[5,3]1==1 && s8matrix[[5,41]1==1,

pl=none; p2=none; p4=upleft];

(* o *)
(* . *)
(* . . %)

If[(s8matrix[[4,3]]==1 &&

s8matrix[[5,3]1]1==1 && s8matrix[[5,4]1]==1,

pl=none; p2=none; p4=nonel;

Tt *)
(* Double Fill with interior and fill cases using 5byb info. only with modified*)
(* s8 *)
(* Here the 2nd row of 5 by 5 affects mapping. *)
it *)

(¥ 77 7 %)
(* o 0 0 %)
(* Z %)
If[s8matrix[[3,4]]1==2 &&

(* X X B *)

If[s8matrix[[2,3]]'!'=0 &&
p8=up; p9=upl;

(* BXB %)
If[s8matrix[[2,3]]1==0 &&
p8=upleft; p9=upl;

(* BX X %)
If[s8matrix[[2,3]]==0 &&
p8=upleft; p9=upright];

(* X B X *)

If[s8matrix[[2,3]]!'=0 &&
p8=upleft; p9=upleft];
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s8matrix[[3,5]]==2 ,

s8matrix[[2,4]]!=0 && s8matrix[[2,5]]1==0,

s8matrix[[2,4]1]'=0 && s8matrix[[2,5]]==0,

s8matrix[[2,4]1]'=0 && s8matrix[[2,5]1]1'=0,

s8matrix[[2,4]1==0 && s8matrix{[2,5]]1!=0,



(* X BB *)
If[s8matrix[[2,3]]!=0 &2
p8=up; p9=up];

(* BB X *)
If(s8matrix[[2,3]]==0 &&
p8=upleft; p9=upleft];

(* BB B x)
If(s8matrix[[2,3]]==0 &&
p7=up; p8=up; p9=upl;

(# Fill or Int p6 *)

If[s8matrix[[4,5]]==1,p6=

1;

(% —————mmm *)
(* Do left side *)
(k ————— o *)
(* 7 o *)
(* 70 *)
(* 2 0 . %)

If[s8matrix[[4,3]]==2 &&

(* X *)
(* X *)
(B *)

If[s8matrix[{3,2]]'!=0 &&
pl=left; p4=left];

(* B *)
(* X *)
(B *)

If([s8matrix[(3,2]1]1==0 &&
pl=left; p4=upleft];

(* B *)
(* X *)
(* X *)

If[s8matrix[[3,2]1]==0 &&
pl=downleft; p4=upleft];

(* X *)
(* B *)
(*x X *)

If(s8matrix[[3,2]]11=0 &&
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s8matrix[[2,4]]1==0 && s8matrix[[2,5]]1==0,

s8matrix[[2,4]11==0 && s8matrix[[2,5]1]!=0,

s8matrix[[2,4]]1==0 && s8matrix[[2,5]1]1==0,

none, pé=upright];

s8matrix[[5,3]]==2 ,

s8matrix[[4,2]]!=0 && s8matrix[[5,2]]==0,

s8matrix[[4,2]1]'=0 &% s8matrix[[5,2]1]==0,

s8matrix[[4,2]]'=0 && s8matrix[[5,2]]!=0,

s8matrix[[4,2]1]==0 && s8matrix[[5,2]]!'=0,
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pl=upleft; p4=upleft];

(x X *)
(+ B *)
(B *)

If[s8matrix[[3,2]]'=0 &% s8matrix[[4,2]1]==0 && s8matrix[[5,2]]==0,
pi=left; p4=1eft];

(* B *)
(» B *)
(* X *)

If[s8matrix[[3,2]1]1==0 && s8matrix[[4,2]]==0 && s8matrix[[5,2]]!=0,
pl=upleft; p4=upleft];

(B *)
(x B *)
(* B *)

If[s8matrix[[3,2]1]1==0 && s8matrix[[4,2]]1==0 && s8matrix[[5,2]1]==0,
pil=left; pé=left; p7=left];

(* Fill or Int p6 *)
1f[s8matrix[[5,4]]==1,p2=none,p2=downleft];
J;

dirmat={{p7,p8,p9},{p4,p5,p6},{p1,p2,p3}};
dirmat

);

Tt

(* This procedure will compute the set of fills that are solved
(* simultaneously using this 3 by 3 s8 stencil,
(* needs back rotated to fit into global grid coordinates

(F — e e TS Sms—o oo

computedonefills[centerfilli_,centerfillj_,the7by7_,lquadtouse_]:=(

(F e e oo msomeso o
(* the center of 7 by 7 is by definition a fill, does not need tested,

(* add to list

(F —m e oS ommee oo

donelist={{centerfilli,centerfillj}};
(*# Test quadl for fills *)
If[1quadtouse==1,

If[the7by7 [[5,4]]1==2, AppendTol[donelist,{centerfilli+1,centerfillj}ll;
If[the7by7[[5,5]]==2,AppendTo[donelist,{centerfilli+1,centerfillj+1}]];
If[the?by?[[4,5]]==2,AppendTo[done1ist,{centerfilli,centerfillj+1}]];

1;
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(* Test quad2 for fills x*)

If[1quadtouse==2,
If[the?by?[[3,4]]==2,AppendTo[donelist,{centerfilli—i,centerfillj}]];
If[the?by?[[B,S]]==2,AppendTo[donelist,{centerfilli—l,centerfillj+1}]];
If[the?by?[[4,5]]==2,AppendTo[donelist,{centerfilli,centerfillj+1}]];
1

(* Test quadl for fills *)

If[1quadtouse==3,

If[the7by7[[3,3]11==2, AppendTo[donelist,{centerfilli-1,centerfillj-1}1]1;
If[the7by7[[4,3]11==2,AppendToldonelist,{centerfilli ,centerfillj-1}]];
If[the?by?[[3,4]]==2,AppendTo[donelist,{centerfilli—i,centerfillj }1;
1;

(* Test quadl for fills *)

If[lquadtouse==4,

If[the7by7[[4,3]]1==2,AppendTo[donelist,{centerfilli ,centerfillj-1}]11;
If[the?by7[[5,3]]==2,AppendTo[donelist,{centerfilli+1,centerfillj-l}]];
If[the?by?[[5,4]]==2,AppendTo[donelist,{centerfi11i+1,centerfillj H31;
1

IntegerPart[donelist]

);

(F e *)
(* This procedure will return a matrix of solutions for the fills with *)
(* Nulls for interior grid points. It will convert the global matrix *)
(* coordinates to global physical coordinates *)
(* And then will find the intersection with a boundary, then compute the *)
(* normal vector to the *)
(* surface, Then call the spatial interpolator with all the mapping *)
(* points and normals to *)
(* find the solution for all the fill points in this particular 2 by 2 *)
(* stencil *)
(F e *)

get2by2solutionmatrix[topleftmatrixi_,topleftmatrixj_,correctlyplacedarrows_]:=

(

(*

Print["called get2by2solutionmatrix"];

*)

R e e —— - *)
(* Convert the topleftmatrixi,j into grid coordinates *)
(F mmm e *)

topleftgridi = topleftmatrixj - im - 1;
topleftgridj =-topleftmatrixi + im + 1;

(ke *)
(* Define the 2 by 2 matrices corresponding to the tangents,normals *)
(* and actual physical location on the boundary that a fill is mapped to *)
(¥ m e *)

tangentsin2by2grid=Table[Null,{iiii,1,2},{jjjj,1,2}];
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normalsin2by2grid=Table[Null,{iiii,1,2},{jjjj,1,2}];
physicalpositionsin2by2grid=Table[Null,{iiii,1,2},{jjjj,1,2}];

(% mmmm e e oo s s mmmo oo *)
(* Define the 2 by 2 matrices corresponding to the unmapped location in *)
(* global grid coordinates and global matrix coordinates *)
(F m oo S — oSS *)

standardphysicalpositionsin2by2grid=Table[Null,{iiii,1,2},{jjjj,1,2}];
standardmatrixpositionsin2by2grid=Table[Null,{iiii,l,2},{jjjj,1,2}];

(% —=———mm—m——rmm——m— e - - %)

(* Loop through all 4 points in 2 by 2 stencil *)

(¥ —mm—mmmm e m o — oo *)

Do[Dol

(F o mm e e oo oSS mmss oo *)
(* Find global physical location of this grid point in 2 by 2 stencil *)
(# —ommmmm e eSS — oSS mmmmmome e *)

physicali=(topleftgridi+ict-1)*deltax;
physicalj=(topleftgridj-jct+1)*deltay;

(h —mmm e m oo —Cooo— oo oo e *)

(* This is the matrix coordinate location of this stencil point *)

(% —mmmm e m oo oSS msSSoo— oo *)
standardmatrixi =(topleftmatrixitict-1);

standardmatrixj =(topleftmatrixj+jct-1);

(k¥ =—mmm—m e m e e— oo me s *)

(* Get the direction of the arrow for this grid point *)

(* ——m—— s ——————— oo so—emmees *)
thearrowdirection=correctlyplacedarrows[[jct,ict]];

(H mmm oSS ooC oS mos oo oeommooeee *)
(* Compute the intersection of this arrow with the defined geometry curves *)
(* If arrow is {0,0} it is an interior point, do not find intersection *)
Tttt *)

If[thearrowdirection!={0,0},

xf= physicali+ (t thearrowdirection([1]]);

yf= physicalj+ (t thearrowdirection[[2]1);

t1=0;

t2=deltax Sqrt[2];

theline={xf,yf,t1,t2};
{{xcoord,ycoord},{xnorm,ynorm},{xtang,ytang}}=findintersectionandnormalandtangen
t[theline];

Print["Grid point ",physicali,",",physicalj," is mapped to
pt,normal,tang=",{{xcoord,ycoord},{xnorm,ynorm},{xtang,ytang}} 1;
normalsin2by2grid[[jet,ict]]={xnorm,ynorm};
tangentsin2by2grid[[jct,ict]]={xtang,ytang};
standardmatrixpositionsin2by2grid[[ict,jct]]={standardmatrixi,standardmatrixj};
physicalpositionsin2by2grid[[jct,ict]]={xcoord,ycoord};
standardphysicalpositionsin2by2grid[[jct,ict]]={physicali,physicalj};

>

T *)
(* If its an interior point then return its physical coordinates as its *)
(* solution *)
Tt *)

normalsin2by2gridl[jct,ict]]=Null;
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tangentsin2by2grid[[jct,ict]]=Null;
standardmatrixpositionsin2by2grid[[ict,jct]]={standardmatrixi,standardmatrixj};
physicalpositionsin2by2grid[{jct,ict]]={physicali,physicalj};
standardphysicalpositionsin2by2grid[[jct,ict]}={physicali,physicalj};

]

,{ict,1,2}]

»{jet,1,2}];

(F —mm e - —————————— *)
(* Now have position information and normal information to surface required  *)
(* to form a 2 by 2 spatial interpolant. And the tangent information. *)
(F *)

allsolutionsin2by2grid=computesolutionsforall[standardmatrixpositionsin2by2grid,
standardphysicalpositionsin2by2grid,physicalpositionsin2by2grid,normalsin2by2gri
d,tangentsin2by2gridl;

allsolutionsin2by2grid

);

(F —— e ———————— - *)
(* This procedure will test if theline intersects any of the specific curves *)
(* And return the curve coordinates and normal at the point of intersection #)
(F *)
findintersectionandnormalandtangent [theline_J:= (

(*

Print["In findintersectionandnormalandtangent“];

*)

intersect=False;

Dol

( ——mmmmm o *)

(* the x equation for parametrized curve *)

(* x=£(t), y=g(t), tstart <= t <= tend *)

(f mmmmmm *)

curvexequation=  listofcurves[[curvenumber]][[1]];
curveyequation=  listofcurves[[curvenumber]][[2]];
curvetstart= listofcurves[[curvenumber]][[3]];
curvetends= listofcurves[[curvenumber]][[4]];

curvetmin=Min[curvetstart,curvetend];
curvetmax=Max[curvetstart,curvetend];

x2equation=theline[[1]];
y2equation=theline[[2]];
t2start=  theline[[3]];
t2end= theline[[4]];

t2min=Min[t2start,t2end];
t2max=Max[t2start, t2end];

allts=Solve[{curvexequation==x2equation,curveyequation==y2equation}, {t,curvet}];

Dol
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thecurvet=curvet/. Flatten[allts[{tctll];

thelinet=t/. Flatten[allts[[tct]]];

1f[ (( thecurvet >= curvetmin ) && ( thecurvet <= curvetmax ) &&
( thelinet >= t2min ) g% ( thelinet <= t2max)) ,

intersect=True;

xcoord=curvexequation /. {curvet->thecurvet};

ycoord=curveyequation /. {curvet->thecurvet};

{xnorm,ynorm} = computenormals [curvenumber,thecurvet];

{xtang,ytang} = computetangents [curvenumber, thecurvet];

]

,{tct,1,Length[allts]}]

,{curvenumber,1,Length[listofcurves]}];

intersectionpoint={xcoord,ycoord};

normalvector ={xnorm, ynorm };

tangentvector ={xtang, ytang };

{intersectionpoint, normalvector, tangentvector}

);

(k mm e TS S SSSSoSooTmm T

(* This procedure will read a grid definition file written by a FORTRAN or
(* C code

(x the grid file consists of 0 = boundary, 1 = interior, 2 = needed fill,
(* 3 = unneeded fill

T e

*)
(* File is stored in column major ordering *)

(k ——mm——mme e — oo *)

readgridproc := (

stmp=OpenRead ["fort.4"];

(k —mmmmmmm e eSS oos— s sme s *)
(* First item in file is size of Cartesian grid in one dimension *)
(* Is a square in 2D *)

(% ———————mmm *)

im=Read[stmp];

(k —mmm—mm o s—mo oo *)

(* Second item in file is grid density per unit interval *)

(k =—— == m oo oo *)
iun=Read[stmp];

(k ——————— *)

(* grid spacing *)

(¢ ——————m—————— *)

deltax=1/1iun;

deltay=deltax;

(% ——————m e — e —m e — e m e *)
(* Set entire grid to 0, all boundary *)
(% —mmm——mmm s — e — o *)

thegrid=Table[Table[0,{i,-im,im}],{j,-im,im}];
arrowgrid=Table[Table[{{0,0}},{i,-im,im}],{j,~im,im}];
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(*
fillsolutiongrid=Table[Table[{"U","U","U"},{i,-im,im}],{j,~im, im}];
*)

(*

pdataPerGridPt=(degree+1)"2;

ulist={};

Do[AppendTolulist,"U"],{ct,1,pdataPerGridPt}];

*)

(*

udxdylist=Table[Table["U",{dx,0,degree}],{dy,0,degree}];

(% = *)

(* Make a big list combining p,u, and v *)

(% — e~ *)
bigulist={udxdylist,udxdylist,udxdylist};
fillsolutiongrid=Table[Table[bigulist,{i,-im,im}],{j,-im,im}];

*)
fillsolutiongrid=Tab1e[Table[Table[Table[Table["U“,{dy,O,degree}],{dx,O,degree}]
,{ict,1,3}],{j,-im,im}], {i,-im, im}];

gridp=Tab1e[Table[Table[Table[pressure[i+im+1,j+im+1,dx,dy],{dy,O,degree}],{dx,O
,degree}l{j,-im,im}],{i,-im, im}];
gridu=Table[Table[Table[Table[uvelocity[i+im+1,j+im+1,dx,dy],{dy,O,degree}],{dx,
0,degree}]{j,-im,im}],{i,-im,im}];
gridv=Tab1e[Table[Table[Table[vvelocity[i+im+1,j+im+1,dx,dy],{dy,O,degree}],{dx,
0,degree}]{j,-im,im}],{i,~im,im}];

(*

gridu=Table[Table[uvelocity[i+im+1,j+im+1],{j,-im,im}],{i,~im, im}];
gridv=Table[Table[vvelocity[i+im+1, j+im+1],{j,-im,im}],{i,~im,im}];

*)

(F —m *)
(* Read entire grid definition into thegrid in matrix form *)
(F mmm e ————— *)
Do[Do[

thegrid[[matrixict,matrixjct]]=Read[stmp]
,{matrixict,1,im+im+1}]
,{matrixjct,1,im+im+1}];

)

(* m o *)
(* Draw a picture of fills, ints, B’s, grid and curves *)
(F mm *)

drawgrid := (

correctedilthisj_]:=im~thisj+1;
correctedj[thisi_]:=im+thisi+1;

alpha=theta;

picturelist={};

Do[Dol[

thevalue=thegrid[[correctedi[j]]] [[corrected;j[i]]];
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physicali=i*deltax;

physicalj=j*deltay;
1f[thevalue==1,theobject=Disk[{physicali,physicalj},.03]1;
If[thevalue==2,theobject=Circ1e[{physicali,physicalj},.03]];
If[thevalue==3,theobject=Circle[{physicali,physicalj},.01]];
If[thevalue==0,theobject=Text["B",{physicali,physicalj},{o,0}]];
picturelist=Append[picturelist,theobject]

,{i,-im,im}]

,{j,-im,im}];

titlestring="Rotation Angle = "<>ToString[N[alphall;
filestring="boxat”<>ToString[N[alpha]];
SetOptions[Display,ImageSize-> 72 * 8, ImageRotated->Truel;

Show[Graphics[{PointSize[0.0S],picturelist,{PointSize[.02],Point[{0,0}]}}],g2,Di
splayFunction->$Disp1ayFunction,PlotLabel—>tit1estring,Axes—>True,AspectRatio—>A
utomatic,GridLines—>{ticklist,ticklist}];

);

buildcurves := (

If[Not[ValueQ[maxmemil],

im=Input["Enter the maximum field size "],

im=maxmemi;

Print["Will use a global domain of size -",im,":",im,""2"];
1;

1f[Not[ValueQ[maxiunl],

iun=Input["Enter the number of grid points per unit length"];
iun=maxiun;

1;

If[Not[ValueQ[thetall,

theta=Input["Enter the rotation angle in Radians for box "1;
1

(*

im=7;

iun=4;

*)

(% ——m—mmm————— *)

(* grid spacing *)

(% ————=m——————= *)

deltax=1/iun;

deltay=deltax;

correctedilthisj_J:=im-thisj+1;
correctedj[thisi_]:=im+thisi+1;

(¥ ———————— *)
(* x=t, y=t~2, -1 <=1t <=1 %)
(% —————mm—mm e *)
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line[1]={Rotate2D[{-1,-1},N[theta],{0,0}],Rotate2D[{1,-1},N[theta],{0,0}]};
line[2]={Rotate2D[{ 1,-1},N[thetal,{0,0}],Rotate2D[{1, 1},8[thetal ,{0,0}]};
line[3]={Rotate2D[{ 1, 1},N[theta],{0,0}],Rotate2D[{-1,1},N[theta]l,{0,0}]};
line[4]={Rotate2D[{-1, 1},N[theta],{0,0}],Rotate2D[{-1,—1},N[theta],{0,0}]};
ticklist=Table[i,{i,-im*deltax,im*deltax,deltax}];

(*
Show[Graphics[{Line[line[i]],Line[line[2]],Line[line[S]],Line[line[4]],{PointSiz
e[.02],Point[{0,0}]}}],Axes—>True,AspectRatio->Automatic,GridLines—){ticklist,ti
cklist}];

*)

(F m e e *)
(* Convert lines to parametric curves *)
(T ——— *)
listofcurves={};

displaylist={};

Dol

xpti=line[linect] [[1]][[11];
ypti=line[linect][[11]1[{2]1];
xpt2=line[linect] [[2]13[[1]];
ypt2=line[linect][[2]]1[[21];

(F m—m *)
(* If line is not vertical, use x=t else use y=t *)
(% —— el *)

If [(xpt2-xpt1)!=0,
slope=(ypt2-ypt1)/(xpt2-xpti);
xf=curvet;

yI=yptl + slope ( curvet - xptl );
ti=xpti;

t2=xpt2,

(% —————mo— *)

(* Is Vertical #*)

(% ———mmm—— *)

xf=xpti;

yf=curvet;

ti=ypti;

t2=ypt2]; ‘
thecurve={xf,yf,t1,t2};
AppendTo[listofcurves,thecurvel;
AppendToldisplaylist,ParametricPlot [{xf,yf},{curvet,t1,t2},DisplayFunction->Iden
tityl]

,{linect,1,4}];

(* Do circle *)

(*

listofcurves={};
displaylist={};
xf=curvet;
yf=Sqrt[1-curvet-2];
ti=-1;
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t2=1;

thecurve={xf,yf,t1,t2};

AppendTo[listofcurves,thecurve];
AppendTo[displaylist,ParametricPlot[{xf,yf},{curvet,t1,t2},DisplayFunction->Iden
tityll;

xf=curvet;

yf=-Sqrt[1-curvet~2];

t1=-1;

t2=1;

thecurve={xf,yf,t1,t2};

AppendTo[listofcurves,thecurvel;
AppendTo[displaylist,ParametricPlot[{xf,yf},{curvet,tl,t2},DisplayFunction—>Iden
tityll;

*)

g2=Show[disp1aylist,AspectRatio—>automatic,DisplayFunction—>Identity];
Print["List of Parametric Curves ", listofcurves];

listofcenterpoints={{correctedi[0],correctedj[0]}};
listofcenterpoints={{0,0}};

);

drawentiregraph := (

(% ——m———m—mmm e m oo *)

(* Draw entire graph with arrows added *)

(¥ —————————mmm—m———m—— o m——mm e *)

(* Put together the list of arrows into a picture *)

(* === mm e me oo *)
plotarrowgrid={};

Do[Dol

Do[

pt={i*deltax, j*deltay};
vect=arrowgrid[[correctedilj],correctedj[il]][[arrowct]];
arrowvec={pt,vect};

AppendTo[plotarrowgrid,arrowvec];
,{arrowct,l,Length[arrowgrid[[correctedi[j],correctedj[i]]]]}]
,{i,-im,im}]

,{j,-im,im}]1;

(¥ —=m——mm e *)
(* Store arrow picture in a variable *)
(% —————m——mmm e *)

g1=ListPlotVectorField[plotarrowgrid,DisplayFunction—>Identity,ScaleFactor—>delt
ax];

(¥ ——m———mm oo ————o oo *)
(* Put together the list of boxes into a picture *)
(% —mmmmm——m e m e m e m—m oo oo *)
colorboxlist={};

boxlist={};
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grayboxlist={};

grayrectlist={};

stencilorderlist={};

(k ——m e *)

(* Start with a red box *)

(% ——— e *)

red=0;

green=0;

blue=1;

Dol

matrixi=topleftlist[[ct]I[{1]];

matrixj=topleftlist{[ct]][[2]];

i= matrixj-im-1;

j=—matrixi+im+i;

pti={i*deltax, j*deltay};

pt2={(i+1)*deltax, j*deltay};

pt3={(i+1)*deltax, (j~1)*deltay};

pté={i*deltax, (j-1)*deltay};

pt5=pti;

midpt={(i+1/2)*deltax, (j-1/2)*deltax};

If[ red==1,red=0;green=1;blue=0;1type={1};gray=0.5,
If[green==1,red=0;green=0;blue=1;1type={0.02,0.02};gray=.7,

If[ blue==1,red=1;green=0;blue=0;1type={0.01,0.02,0.02,0.02};gray=.9]111;
AppendTo[colorboxlist,{RGBColor[red,green,blue],Line[{ptl,pt2,pt3,pt4,pt5}]}];
ltype={1};

AppendTo[boxlist,{Dashing[ltypel] ,Line[{pt1,pt2,pt3,pt4,pt5}1}];
AppendTo[grayboxlist, {GrayLevel [gray],Line[{pt1,pt2,pt3,pt4,pt5}1}];
AppendTolgrayrectlist,{GrayLevellgray],Rectanglel[pt4,pt2]}];
AppendTo[stencilorderlist,{GrayLevel[1],Text [ct,midpt]}];
,{ct,1,Length[topleftlist]}];

g3=Show[Graphics[grayrectlist],DisplayFunction->Identity];
g4=Show[Graphics[boxlist],DisplayFunction->Identity];
g5=Show[Graphics[stencilorderlist],DisplayFunction->Identity];

Show[g3,g4,

Graphics[{PointSize[0.05],picturelist, {PointSize[.02],Point[{0,0}]1}}]1,
gl,g2,35,DisplayFunction—>$DisplayFunction,PlotLabel->tit1estring,Axes->True,
AspectRatio->Automatic];

(*
Show[Graphics[{PointSize[0.05],picturelist,{PointSize[.02],Point [{0,0}1}}],
gl,g2,g3,DisplayFunction->$Disp1ayFunction,PlotLabel-)titlestring,Axes->True,
AspectRatio->Automatic,GridLines->{ticklist,ticklist}];

*)

);

makebesselfile:=(

stmp=OpenWrite["besselfile"];
deltax=N[1.0/iun,30];
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(*# Can use any of the eigenvalues from BesselJPrimeZeros[0,n] *)
(F —mmmm e m oo oo s os oo *)

bessellam:=3.8317059702075123156144358863081 ;

R[r_] := N[Sqrt[2.0] BesselJ[0,bessellam 1r]/Bessel][0,bessellam],50];

Dol

Dol

physicalicoord=N[i*deltax,so];

physicaljcoord=N[j*deltax,50];

physicalr = N[Sqrt[physicalicoord‘2+physicaljcoord‘2],50];

besseld=5.0;

Write[stmp,N[besseld R[physicalr]/Sqrt[2 * Pil,501];

(*

pressuregrid[[matrixicoord,matrixjcoord]]=N[d Rlphysicalr] / Sqrt[2 Pill;

*)

,{i,-im, im}]

,{j,-im,im}];

Closel[stmpl;

);

Tt *)
(* This procedure will return a set of 9 vectors showing the arrow or direction *)
(* for each of the 9 grid points to be mapped to. If they are an interior point *)
(* they do not get mapped, so assigned a none or {0,0} vector *)
Tt i *)
s7mapping [s7matrix_]:=(

Print[“Calling s7mapping"];

(* p7 p8 p9 *)

(* p4 p5 p6 *)

(* pl p2 p3 *)

(% ——————m e m e —m e — e mm oo *)
(* Set of all normalized vector directions *)
(% —==mm—mmm e —m——m——— oo —— o *)
none = {0,0};

up = {0,1};

upright = {1/Sqrtl[2],1/sqrt(2]};
right = {1,0};

downright = {1/Sqrt[2],-1/Sqrt(2]1};
down = {0,-1};

downleft = {-1/Sqrt[2],-1/Sqrt{2]};
left = {-1,0};

upleft = {-1/Sqrt[2],1/Sqrt{2]};

(% —————mm e m o *)

(* By s7 assumption, these do not vary *)

(% =——— e m e m e *)

(* It is important to check for undefined arrows *)

(* Those marked undefined should be defined later *)
(# mmmm e oSS So— oo oo *)
pl=undefined;

p2=none;
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p3=undefined;
p4=undefined;
p5=none;
p6=undefined;
p7=undefined;
p8=up;
p9=undefined;

(K m e *)
(* Non-Double Fill s7 modified assumption *)
(F e *)

(* Row 5 of S7 Symmetrical Mapping Figure in Dissertation *)
(* Only the p7 changes direction for this case based on 2,2 *)
(* If no B nearby, p7 is left undefined *)

(* X X B XX =*)
(* XX B XX =*)
(* X oo X X *)
(* X X X %)
(* X o . XX %)

If[s7matrix[[5,2]]==2 && sTmatrix[[4,2]])==1 && s7matrix[[3,2]]==2,
(* Default Settings *)

If[s7matrix[[2,2]]!=0 && s7matrix[[2,1]]'=0,

pl=downleft; p4=none; p7=up J;

If[s7matrix[[2,2]]==0,

pl=downleft; p4=none; p7=up J;

If(s7matrix[[2,1]]==0,

pl=downleft; p4=none; p7=upleft ];

1;

(¥ —mommmmm *)
(* Right Side *)
(* —=mmmmmee *)

If[s7matrix[[5,4])==2 && sTmatrix[[4,4]1]==1 && sTmatrix[[3,4]1]==2,
If[s7matrix{[2,4]]!=0 && s7matrix[[2,5]]'=0,

p3=downright; p6=none; p9=up 1;

If(s7matrix[[2,4]1]==0,

p3=downright; p6=none; p9=up J;

If(s7matrix[[2,5]]==0,

p3=downright; p6=none; p9=uprightl];

1;

(* Row 6 of S7 Symmetrical Mapping Figure in Dissertation *)

(* X X BX X *)
(* X X B XX *)
(* X oo X X %)
(*Xo . XX %
(*X . . XX *)

If[s7matrix[[5,2]]==1 && s7matrix[[4,2]]1==2 && sTmatrix[[3,2]]1==2,
(* Default Settings *)
If[s7Tmatrix[[2,2]]'=0 && s7matrix[[2,1]]!=0,

NASA/TM—1999-209182



307

pl=none; p4=upleft; p7=upleft ];
If(sTmatrix[[2,2]]==0,

pl=none; pé=upleft; p7=up ];
If[sTmatrix[[2,1]]1==0,

pl=none; p4=upleft; p7=upleft ];

1;

(% —=--mmmms *)
(* Right Side *)
(% ———mmmmm- *)

If[s7matrix[[5,4])==1 && sTmatrix[[4,4]1]==2 &% sTmatrix[[3,4]]1==2,
(* Default Settings *)

If[s7matrix[[2,4]]!'=0 && sTmatrix[[2,5]]!=0,

p3=none; p6=upright; p9=upright 1;

If[s7matrix[[2,4]]==0,

p3=none; p6=upright; p9=up 1;

If[s7matrix[[2,5]]1==0,

p3=none; p6=upright; p9=upright 1;

1

(* Row 7 of S7 Symmetrical Mapping *)

(* X X B XX %)
(* X X BXX*)
(* X oo X X *)
(*x X . . X X %)
(X . . XX %)

If[sTmatrix[[5,2]11==1 && sTmatrix[[4,2]]==1 && s7matrix[[3,2]]==2,
(* Default Settings *)

If[s7matrix[[2,2]]!'=0 && s7matrix[[2,1]]'=0,

pl=none; p4=none; p7=up 1;

(* XX BXX=x)

(* X BB XX *)
(* X ooX X x)
(* X . . XX *)
(* X . . XX =*)
If(s7matrix[[2,2]1]1==0,
pi=none; p4=none; p7=up J;
(* X X B XX *)

(* BXBIXZX=x*)
(* X o0 XX %)
(* X . . XX %)
(X . .XX=*
If [s7matrix[[2,1]]==0,
pl=none; p4=none; p7=upleft J;
1

(* Right Side *)

If[s7matrix[[5,4]1==1 &% sTmatrix[[4,4]]1==1 && sTmatrix[[3,4]11==2,
(* Default Settings *)

If[s7matrix[[2,4]]'=0 && sTmatrix[[2,5]]!=0,
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p3=none; pé=none; p9=up J;
If[s7matrix[[2,4]]1==0,

p3=none; p6=none; p9=up J1;
If[(s7matrix[[2,5]]1==0,

p3=none; p6=none; p9=upright J;

1;

(k s ——— *)
(* Double Fill with interior and fill cases using 5byb info. only with modified#)
(* s7 *)
(* Here the outer points of 5 by & affects mapping. *)
(k — e ————————— - *)
(* X X BXX*)

(* X X BX X %)

(* X o0 XX *)

(* X o . X X %)

(* X o . XX *)

(* Left Side *)

If[(s7matrix[[5,2]1]1==2 && s7matrix[[4,2]]1==2 && s7matrix[[3,2]1]1==2) ,

(X XBXX %)
(* BBBXX *)
(*BooXXx*)
(*Bo . XX %)
(*Z o0 . XX %)

If[s7matrix[[5,11]!=0 && sTmatrix[[4,1]]==0 && sTmatrix[[3,1]]==0 &&
sTmatrix{[2,21]==0 ,
pl=upleft; p4=upleft; pT7=upl];

(* X X B X X %)
(*BBBIXX=*)
(*BooX X *x)
(*Bo . XX *)

(*Bo . X X *)
If(s7Tmatrix[[5,1]1]==0 && s7matrix[[4,1]]==0 && sTmatrix[[3,1]]==0 &&
sTmatrix[[2,2]1]1==0 ,

pl=left; p4=left; p7=upl;

(* X X B X X %)
(*» BBBXZX=*)
(* BooX X *x)
(* B o X X *)
(*B o X X %)
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If[sTmatrix[[5,1]]'=0 && sTmatrix[[4,1]]1!=0 && sTmatrix[[3,1]1]==0 &&
sTmatrix[[2,2]]==0 ,
pi=downleft; p4=upleft; p7=upl;

(* X X B XX *)
(* BBB X X %)
(* BoolXZX*)
(* Zo . XX %)

(* Bo . XX %)
If[s7matrix[[5,1]]1==0 && s7matrix[[4,1]]!=0 && s7matrix[[3,1]]==0 &&
sTmatrix[[2,2]]1==0 ,

pi=left; p4=upleft; p7=upl;

(* Degenerate *)

(* X X B XX %)
(* BBBIXX %)
(* 2 00X X %)
(* Bo . XX %)

(* Zo . XX %)

If[s7Tmatrix[[5,11]1'=0 && s7matrix[[4,1]1]1==0 && s7matrix[[3,1]1]!=0 &&
sTmatrix[[2,2]]1==0 ,

pi=left; p4=left; p7=upl;

(* X X BXX=*)
(* BBBIXX*)
(* Z oo X X *)
(* Bo . X X %)

(* Bo . X X %)

If[sTmatrix[[5,1]1==0 && s7matrix[[4,1]]1==0 && s7matrix[[3,1]]!=0 &&
sTmatrix[[2,2]]==0 ,

pi=left; p4=left; p7=upl;

(* Degenerate *)

(* X X BXX=*)
(* BBBIXX *)
(* Z o oX X %)
(* Z o . XX *)

(* Bo . X X %)

If[sTmatrix[[5,111==0 && s7matrix[[4,1]1]!=0 && s7matrix[[3,1]]!=0 &&
sTmatrix[[2,2]]==0 ,

pil=left; p4=left; p7=upl;

(*+ First ROW Done of S7 Symmetrical Mapping in Dissertation figure *)
(* Starting Second ROW *)
(* The first and second row have identical mappings, and will be handled by *)

(* the first 7 *)
(* mappings since s7matrix[[2,1]] is not compared above since its never mapped *)
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(*
(*
(*x
(=
(*
(*

(*
(*
(*
(*
(*

310

to *)
Done with Second ROW *)

Starting Third ROW *)
——————————————————————————————————————————————————————————————————————————— *)
Double Fill with interior and fill cases using 5by5 info. only with modified*)
s7 *)
Here the outer points of 5 by 5 affects mapping. *)
——————————————————————————————————————————————————————————————————————————— *)
XX BXX#*)

BZBXIXHx)

BooXX=*)

Bo . XX *)

Zo.XX=x)

If{s7matrix[[5,1]1]!=0 && s7matrix[[4,1]1]1==0 && s7matrix[[3,1]1]1==0 &&
sTmatrix[[2,1]]1==0 ,

pi=

(*
(*
(*
(*
(*

upleft; p4=upleft; p7=upleft];

*)
*)
*)
. *)
Bo . XX#*)

(o=~ - B o= I ]
O O W ¥

o W w
PE Dd b4 B4
ol B ]

If[s7matrix[[5,111==0 && s7matrix[[4,1]1]1==0 && s7matrix[[2,1]]1==0 &&
sTmatrix[[2,1]]==0 ,

pi=

(%
(*
(*
(*
(*

left; p4=left; p7=upleft];
X X BXX %)
BBBXX#*)
BooXX~x*)
Zo . XX~x)
Zo .XX+*)

If(s7matrix[[5,1]1]!=0 && s7matrix[[4,1]]'=0 && s7matrix[[3,11]1==0 &&
sTmatrix[[2,1]]==0 ,

pl=

(*
(*
(*
(*
(*

downleft; p4=upleft; p7=upleft];
XX BXX=*)
BBBXZX=x)
BooXX=*)
Zo.XX=*)
Bo . XX=*)

If{s7matrix[[5,1]]==0 && sTmatrix[[4,1]]!=0 && sTmatrix[[3,1]]==0 &&
sTmatrix[[2,1]]1==0 ,

pi=

(*
(*
(x
(*

left; p4=upleft; p7=upleft];

Degenerate *)
XX BXX=*)
BZBIXZXH=*)
ZooXX~x*)
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Bo . X X %)
Zo . X X=*)

If[sTmatrix[[5,1]1!=0 && sTmatrix[[4,111==0 && sTmatrix[[3,1]]1!=0 &&
sTmatrix[[2,1]]==0 ,

pi=

(*
(*
(*
(*
(%

left; pd=left; p7=upleft];

X XBXX«*)
BZBIXXH=*)
ZooXX %)
Bo . XX *)
Bo . XX =*)

If[s7matrix[[5,1]1==0 && sTmatrix[[4,1]]==0 && s7matrix[[3,1]]1!=0 &&
sTmatrix[[2,1]1]1==0 ,

pl=

(*
(*
(*
(*
(*
(*

left; p4=left; p7=upleft];

Degenerate *)
XX BXX=*)
BZBXZXH=*)
ZooXX=x)
Zo . XX %)
Bo .XX=*)

I1f[sTmatrix[[5,1]]==0 && s7matrix[[4,1]]'=0 && s7matrix[[3,1]]!=0 &&
sTmatrix[[2,1]1]1==0 ,

pl=

(*
(*
(*
(*
(*
(*
(*

(%
(*
(*
(*
(*
(*

left; p4=left; p7=upleftl];

Done with ROW 3 *)
Start ROW 4, think its last *)

————————————————————————————————————————————————————————————————————————————— *)
Double Fill with interior and fill cases using 5byb info. only with modified x)
s7 *)
Here the outer points of 5 by 6 affects mapping. *)
————————————————————————————————————————————————————————————————————————————— *)
Degenerate *)
XXBXX*
ZZBXXH=*)
BooXZX*=*)
Bo . XX=*)
Zo . XXx)

If[sTmatrix[[5,1]1'=0 && s7matrix[[4,1]1]==0 && sTmatrix[[3,1]]==0 &&
sTmatrix[[2,1]]!=0

(*
(*
(*
(*

&& s7matrix[[2,2]]'=0 ,
pi=

upleft; p4=upleft; p7=upl;

XXBXX=*)
ZZBXXH*)
BooXX=*)
Bo . X X %)
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(* Bo . XX %)
If[s7matrix[[5,1]1]1==0 && sTmatrix[[4,1]1]==0 && sTmatrix[[3,1]1==0 &&
sTmatrix[[2,11]'=0
&& sTmatrix[[2,2]1]!'=0 ,
pl=left; pd4=left; p7=left];

(* X X BXX=*)
(* ZZBXX=*)
(* BoolXX=x*)
(* Z o X X %)

(*Z o0 . XX *)
If[s7matrix[[5,1]1]1'=0 && s7matrix[[4,1]]!'=0 && s7matrix[[3,1]]==0 &&
sTmatrix[[2,1]]1=0

&& sTmatrix[[2,2]]'=0 ,
pl=downleft; p4=upleft; p7=upl;

(* Degenerate *)

(* X X BXX=*)
(* ZZBXX=x*)
(*BooX X =*)
(* Z o . X X *)

(* Bo . XX *)
If[s7matrix[[5,1]]1==0 && sTmatrix[[4,1]]!=0 && s7matrix[[3,1]11==0 &&
sTmatrix[[2,1]]'=0

&& sTmatrix[[2,2]]'=0 ,
pi=left; pé4=upleft; p7=up]l;

(* Degenerate *)
(* X XBXXx)
(*ZZBXX=x)
(*ZooX X %)
(*Bo . XX=*)
(*Zo . XX %)
If[s7matrix[(5,1]1]'=0 && sTmatrix[[4,1]1]==0 && s7matrix[[3,1]]1!'=0 &&
sTmatrix[[2,1]]!=0

&& sTmatrix[[2,2]]!=0 ,
pl=left; p4=left; p7=upl;

(* X XBXX %)
(*2ZZBXZX=x*)
(* 2 00XX*)
(*Bo . XX =*)

(#*Bo . X X *)
If[sTmatrix[[5,1]]1==0 && s7matrix[[4,1]]==0 && s7matrix[[3,1]1]1'=0 &&
sTmatrix[[2,1]] =0

&& s7matrix[[2,2]]'=0 ,
pi=left; pd4=left; p7=upl;

(* Degenerate *)

(* X X B XX *)
(*Z ZBXXx)
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(*Z oo X X *)
(* 20 . XX %)
(* Bo . X X %)
If[sTmatrix[[5,1]]1==0 && sTmatrix[[4,1]]!=0 && sTmatrix[[3,1]]!'=0 &&
sTmatrix[[2,1]1]!=0
&% sTmatrix([[2,2]1'=0 ,
pi=left; p4=left; p7=upl;

(* Done with ROW 4 *)

1;
(* Right Side *)
Tf[(s7matrix[[5,4]11==2 && sTmatrix[[4,4]11==2 && sTmatrix[[3,4]]1==2) ,

(* X X BXX=*)
(* BB B X X *)
(* BooXXH*)
(*x Bo . X X *)
(* Z o X X %)

(* Right Side *)

If[s7matrix[[5,5]]'=0 && s7matrix[[4,5]1]1==0 && s7matrix[[3,5]]==0 &&
sTmatrix[[2,4]1]==0 ,

p3=upright; p6=upright; po=up];

(* X X BXX=*)
(* BBB XX *)
(* BooXX=x*)
(* Bo . X X *)
(* Bo . X X %)

(* Right Side *)

If[sTmatrix[[5,5]]==0 && s7matrix[[4,5]1]1==0 && sTmatrix[[3,5]]1==0 &&
s7Tmatrix[[2,4]1]1==0 ,

p3=right; pé=right; p9=up]l;

(* X X B XX *)
(x B B X X *)
(* BooXZX=x)
(* Bo . X X *)
(* Bo . X X %)

(* Right Side *)

If(sTmatrix[[5,5]]1!=0 && sTmatrix[[4,5]1!'=0 && sTmatrix[[3,5]]1==0 &&
sTmatrix[[2,4]11==0 ,

p3=downright; p6=upright; p9=upl;

(* X X BX X *)

NASA/TM—1999-209182



314

(* BBBX X %)
(* BooXX#%*)
(*Z o . XX %)
(* Bo . XX %)

(* Right Side *)

If[s7matrix[[5,5]]1==0 && s7matrix[[4,5]]!'=0 && s7matrix[[3,5]1]1==0 &&
sTmatrix[[2,4]]==0 ,

p3=right; p6é=upright; p9=up]l;

(* Degenerate *)

(* X XBXX=*)
(* BBBIX X %)
(*Z oo X X %)
(*Bo . XX %)
(*Z o . XX *)

(* Right Side *)

If[s7matrix[[5,5]]!=0 && s7matrix[[4,5]11==0 && s7matrix[[3,5]1]!=0 &&
sTmatrix[[2,4]]==0 ,

p3=right; p6=right; p9=upl;

(* XX B XX %)
(* BBBXX *)
(* Z oo X X %)
(* B o X X %)
(* B o X X *)

(* Right Side *)

If[s7matrix[[5,5]]1==0 && sTmatrix[[4,5]]==0 && s7matrix[[3,5]]'=0 &&
sTmatrix[[2,4]1==0 ,

p3=right; pé=right; p9=up];

(* Degenerate *)

(* X X B XX *)
(* BBBX X *)
(*Z oo X X %)
(* Zo . X X %)
(*Bo . XX *)

(* Right Side *)
If[s7matrix[[5,5]]==0 && s7matrix[[4,5]1'=0 && s7matrix[[3,5]]!=0 &&
s7matrix[[2,4]]==0 ,

p3=right; p6=right; p9=up];

(* First ROW Done of S7 Symmetrical Mapping in Dissertation figure *)

(* Starting Second ROW *)
(* The first and second row have identical mappings, and will be handled by the
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first 7 *)
(* mappings since s7matrix[[2,1]] is not compared above since its never mapped

to
(%
(*
(*
(*
(*
(*
(%

(*
(%
(*
(*
(*

(*

*)
Done with Second ROW *)
Starting Third ROW *)

————————————————————————————————————————————————————————————————————————————— *)
Double Fill with interior and fill cases using 5by5 info. only with modified *)
s7 *)
Here the outer points of 5 by 5 affects mapping. *)
————————————————————————————————————————————————————————————————————————————— *)
XXBXXHx)
BZBXXHx*)
BooXX=x)
Bo.XX=)
Zo .XX*)
Right Side *)

I [s7matrix[[5,61]1!=0 && s7matrix[[4,5]1==0 && sTmatrix[[3,5]]1==0 &&
sTmatrix[[2,5]1==0 ,

p3=

(*
(*
(*
(*
(*

(*

upright; pé=upright; p9=upright];
B *)
*)
*)
*)
*)

oW
O O O W =
o)

Ea o T ]
PR o bd b B

Right Side *)

If[s7matrix[[5,51]1==0 && s7matrix[[4,5]1]1==0 && s7matrix[[3,5]1]==0 &&
sTmatrix[[2,561]==0 ,

p3=

(*
(*
(*
(*
(*

(*

right; p6=right; p9=upright];

B
B
o

*)
*)
*)
*)
*)

NN @ >
O O O w =
b4 b D B D
Dd P4 P4 D4 D

Right Side *)

If[s7matrix[[5,51]'=0 && s7matrix[[4,5]]1!=0 && s7matrix[[3,5]]1==0 &&
sTmatrix[[2,5]]==0 ,

p3=

(*
(*
(*
(*
(*

downright; p6=upright; p9=upright];

XX BXX«*)
BBBIXZX*)
BooXX*)
Zo . X X%
Bo . XX %)
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(* Right Side *)

If[s7matrix[[5,5]11==0 && s7matrix[[4,5]]!=0 && s7matrix[[3,5]1==0 &&
sTmatrix[[2,5]]==0 ,

p3=right; p6=upright; pS=upright];

(* Degenerate *)

(* X X B XX *)
(*xBZBIXZX=*)
(*Z oo X X %)
(*Bo . XX *)
(*Z o . XX %)

(* Right Side *)

If[s7matrix[[5,5]]!=0 && s7matrix[[4,5]]1==0 && s7matrix[[3,5]]!=0 &&
sTmatrix([[2,5]]==0 ,

p3=right; pé=right; p9=upright];

(* X X B XX *)
(* BZBXX*=*)
(*Z 00X X %)
(* Bo . XX %)
(*Bo . XX %)

(* Right Side *)

If[sTmatrix[[5,5]1==0 && s7matrix[[4,5]]1==0 && sTmatrix[[3,5]]1!=0 &&
sTmatrix[[2,5]1]==0 ,

p3=right; pé=right; p9=upright];

(* Degenerate *)
(* XX BXZX=x*)
(* BZBXZX *)
(* 0 *)
(* *)
(* *)

o NN
o O ©o
P D4 4
>4 D4 b4

(* Right Side *)

If[s7matrix[[5,5]1]1==0 && s7matrix[[4,5]]'=0 && s7matrix[[3,5]]'!=0 &&
sTmatrix[[2,5]]==0 ,

p3=right; pé=right; p9=upright];

(* Done with ROW 3 %)
(* Start ROW 4, think its last *)

(¥ e *)
(* Double Fill with interior and fill cases using 5by5 info. only with modified *)
(* s7 *)
(* Here the outer points of 5 by 5 affects mapping. *)

(F e *)

(* Degenerate *)
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(* X XBXX=*)
(*# ZZBXX=*)
(* BooXZX=x*)
(*Bo . XX *)
(* 2o . XX *)

(* Right Side *)
T1f[sTmatrix[[5,5]]!=0 && s7matrix[[4,5]11==0 && sTmatrix[[3,5]]1==0 &&
s7matrix[[2,5]1!=0
%& s7Tmatrix[[2,4]]!'=0 ,
p3=upright; p6é=upright; p9=upl;

(*» X X B XX *)
(* ZZBXX=*)
(* BooXX#*)
(* Bo . XX *)
(* Bo . X X %)

(* Right Side *)
If[s7matrix[[5,5]11==0 && sTmatrix[[4,5]1]1==0 && sTmatrix[[3,56]1]1==0 &&
sTmatrix[[2,5]1!=0

&& sTmatrix[[2,4]1]1'=0 ,

p3=right; p6=right; p9=rightl;

(* X X B XX *)
(* ZZBXXx*)
(*BooXX=*)
(*Zo . XX *)
(#* 2o . XX %)

(* Right Side *)
If[s7matrix[[5,5]]1'=0 && sTmatrix[[4,5]]1!=0 && sTmatrix[[3,5]]==0 &&
sTmatrix[[2,5]]1!=0

&& sTmatrix[[2,41]!'=0 ,

p3=downright; pé=upright; p9=up]l;

(* Degenerate *)

(* X XBXX*)
(* ZZBXX=x)
(* BooXX %)
(* Zo . XX *)
(*Bo . XX *)

(* Right Side *)
If[s7matrix([5,511==0 && s7matrix[[4,5]1]'!=0 && sTmatrix[[3,5]1==0 &&
s7matrix[[2,5]]'!=0

&& sTmatrix[[2,4]]1'=0 ,
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p3=right; p6=upright; p9=up];

(* Degenerate *)
(* X X BXX*)

(* ZZBXX*)
(*Zo0oo0XXx%)
(*Bo . XX %)
(*Zo . X X =*)

(* Right Side *)

If[s7matrix[[5,51]1!=0 && s7matrix[[4,5]1]1==0 && s7matrix[[3,5]]'=0 &&
sTmatrix[[2,5]]==0 ,

p3=right; p6=right; p9=upl;

(* X
(*
(*
(*
(*

B
B
)

*)
*)
*)
*)

*)

o w NN

QO O O N »
Ea i - -
Pd De pd D B

(* Right Side *)
If(s7matrix[[5,5]11==0 && s7matrix[[4,5]]1==0 && s7matrix[[3,5]]!=0 &&
sTmatrix[[2,5]1]11=0
&& sTmatrix([[2,4]]'=0 ,
p3=right; p6=right; p9=up];

(* Degenerate *)

(* X X BXX *)
(xZ ZB XX #*)
(*Z oo X X %)
(*Z o . X X *)
(*Bo . XX %)

(* Right Side *)
If[s7matrix[[5,5]]1==0 && s7matrix[[4,5]]'=0 && s7matrix[[3,5]]'=0 &&
s7matrix[[2,5]]!=0
&& s7matrix([2,4]]'=0 ,
p3=right; pé=right; p9=up]l;

(* Done with ROW 4 *)

1;
dirmat={{p7,p8,p9},{p4,p5,p6},{pl,p2,p3}};
dirmat

),
showfills:=(

(*
fillposlist=Position[thegrid,2];
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*)

fillposlist=correctfillordering;

Dol

matrixi=fillposlist[[ct]][[1]];

matrixj=fillposlist[[ct]][[21];

ict= matrixj-im-1;

jet=—matrixi+im+i;

oldphysicalpositionvector={ict*de1tax,jct*deltax};
newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[-thetal,{0,0}];

newphysicalicoord=newphysicalpositionvector[[1]];
newphysicaljcoord=newphysicalpositionvector[[2]];

correctp = -N[(Cos[Sqrt[2] Pi physicaltime] Cos[Pi newphysicalicoord] Cos[Pi

newphysicaljcoordl)];

If[thegrid[[matrixi,matrixj]]!=2,Print[”Fill Error"]1];

1f [Abs[pressuregrid[[matrixi,matrixj,1,1]]-correctpl>.5,

Print[”*Pressure[",matrixi,",",matrixj,"]=",pressuregrid[[matrixi,matrixj,1,1]],
" correctp =",correctp],

Print["Pressure[",matrixi,",",matrixj,”]=",pressuregrid[[matrixi,matrixj,1,1]],”
correctp =",correctp]l]

,{ct,1,Length[fillposlist]}]);

);

(F o — oo e *)
(* This procedure will compute the number of fills in the stencil for *)
(* sorting purposes. Returns 0 if not a useful stencil *)
(F = e o oo *)

getnumberoffillsinstencil2[testmatrix_]:=(
localtestmatrix=testmatrix;
lmat=testmatrix;

(* Quads *)
(k== *)
(%13 | 21%)
(*k———0——-%)
(x14a | 1]%)
(#—————== *)

numberoffillsquadi=5;
numberoffillsquad2=5;
numberoffillsquad3=5;
numberoffillsquad4=5;

(% ——— e *)
(* Determine which 2 by 2 stencil to use *)
(¥ ————— e *)
(* X X X X X X X *)

(* X X X X X X X *)

(* X X X X X X X %)

(*xx X0 . XX %)

(* x x x X X *)

(* X X X X X X X %)

(* X X X X X X X %)

(* Count number of fills in quad i, O means don’t use *)
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(* Trying to minimize number of fills in each stencil

(F — ol

If[Imat[[5,511==1 || lmat[{5,4]1]==1 || 1mat[[4,5]1]1==1,
numberoffillsquadi=1;

If[lmat[{[5,5]]==2, numberoffillsquadi++];
If[lmat[[4,5]]==2, numberoffillsquadi++];
If[lmat[[5,4]1]1==2, numberoffillsquadi++];

1;

(* x x x X X X X %)
(* x x x X X x x %)
(* x x x . X X %)
(*xx X0 . X X *)
(¥ X X X X X X X *)
(*xxxxxxx *)
(* x X XX X x X *)

(* Count number of fills in quad 2, 0 means don’t use
(* Trying to minimize number of fills in each stencil

(% ——— e

If(lmat[[3,5]]1==1 || 1mat[[3,4]]1==1 || 1lmat[[4,5]]==1,
numberoffillsquad2=1;

If[(Imat[[3,5]]1==2, numberoffillsquad2++];
If[1mat[[4,5]]1==2, numberoffillsquad2++];
If(1mat[[3,4]1==2, numberoffillsquad2++];

1

(# X X X X X X X %)
(* x x x x X x X *)
(* x x X X X %)
(* x X . 0X X X %)
(*x x X X XX X *)
(*x x XX XX X %)
(* X x X X XX X *)

(* Count number of fills in quad 3, 0 means don’t use
(* Trying to minimize number of fills in each stencil

(% o

If[1mat([4,3]1]==1 || Imat[[3,3]]1==1 || 1mat[[3,4]]1==1,
numberoffillsquad3=1;

If[1mat[[4,3]])==2, numberoffillsquad3++];
If[Imat[[3,3]]==2, numberoffillsquad3++];
If[1mat[[3,4]]1==2, numberoffillsquad3++];

1;

(* X X X X XX X *)
(* x x X X X X X *)
(* X X X X XX X %)
(*x x . 0ox x x %)
(* x x X X X %)
(* X X X X X X X %)
(* X X X X X X X %)

(* Count number of fills in quad 4, O means don’t use
(* Trying to minimize number of fills in each stencil

(* == ——————

If[1mat[[5,3]]==1 || 1lmat[[5,4]1]==1 || 1lmat[[4,3]1]==1,
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numberoffillsquad4=1;

If[1mat[[5,3]11==2, numberoffillsquad4++];
1f[1mat [[4,3]]==2, numberoffillsquad4++];
I1f[1mat[[5,4]1]1==2, numberoffillsquad4++];

1;

bestquadnumber=0;
Tt *)
(* Now determine which quadrant has the fewest number of fill points *)
ittt *)
(* Quad 1 *)

(% —--mm- *)

I1f{numberoffillsquadl <= numberoffillsquad2 &&
numberoffillsquadi <= numberoffillsquad3 &&
numberoffillsquadl <= numberoffillsquad4 &&
numberoffillsquadl <§,

bestquadnumber=1;numberoffills=numberoffillsquad1];

(* Quad 2 *)

(* === *)

If[numberoffillsquad2 <= numberoffillsquadl &&
numberoffillsquad2 <= numberoffillsquad3 &&
numberoffillsquad2 <= numberoffillsquad4 &&
numberoffillsquad2 <5,

bestquadnumber=2;numberoffills=numberoffillsquad2];

(* Quad 3 *)

(% ---mm- *)

1f [numberoffillsquad3 <= numberoffillsquad2 &&
numberoffillsquad3 <= numberoffillsquadl &&
numberoffillsquad3 <= numberoffillsquad4 &&
numberoffillsquad3 <5,

bestquadnumber=3;numberoffills=numberoffillsquad3];

(* Quad 4 *)

(* —---—- *)

I1f [numberoffillsquad4 <= numberoffillsquad2 &&
numbercffillsquad4 <= numberoffillsquad3 &&
numberoffillsquad4 <= numberoffillsquadl &&
numberoffillsquad4 <5,

bestquadnumber=4;numberoffills=numberoffillsquad4];

( e m e oSS mmmeme T

(* At this point, bestquadnumber is the correct quadrant to use with this
(* £fill point. If O, then this fill point is not needed

(* numberoffills contains number of fills using the correct quadrant

(* Return this pair of information

(k —m o oo momsmmoo e

{bestquadnumber ,numberoffills}

);
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(F e *)
(* This procedure will compute the number of fills in the stencil for *)
(* sorting purposes. Returns 0 if not a s8 or s7 stencil *)
(F e *)

getnumberoffillsinstencil[testmatrix_]:=(

localtestmatrix=testmatrix;

isgood=False;

isneeded=False;

ignore=False;

dolater=False;

rotations=xxx;

s8formrotations=False;

s7Tformrotations=False;

MatrixForm[testmatrix];

numberoffills=0;

Dol

(% ——m e *)

(* Test Diagonal s8 assumption *)

(I e T —— *)

If[localtestmatrix[[4,4]]==1,
If[localtestmatrix[[1,1]]1==0 && localtestmatrix[[2,2]]1==0 &&

localtestmatrix[[5,5]]==1,

(F mmm e *)
(* It is s8, now count the number of fills in this 3 by 3 canonical stencil *)
(F m *)

numberoffills8=1;
If[localtestmatrix[[3,4]]==2,numberoffillsg++];
If[localtestmatrix[[3,5]]==2,numberoffillsg++];
If[localtestmatrix[[4,3]]==2,numberoffills8++];
If[localtestmatrix[[5,3]]==2,numberoffillss8++];
If[localtestmatrix[[4,5]]==2,numberoffills8++];
If{localtestmatrix[[5,4]]==2,numberof£fills8++];

isgood=True;rotations=ct-1; s8formrotations=ct-1];

isneeded=True] ;

(% ——— e *)
(* Test Vertical s7 assumption *)
(% —— el *)

If{localtestmatrix[[4,3]]==1,
If[localtestmatrix[[1,3]]==0 && localtestmatrix[[2,3]]==0 &%
localtestmatrix[[5,3]]==1,

(* — o *)
(* It is s7, now count the number of fills in this 3 by 3 canonical stencil *)
e T ———— e *)

numberoffills7=1;
If[localtestmatrix[[3,2]]==2,numberoffills7++];
If[localtestmatrix[[3,4]]==2,numberoffills7++];
If[localtestmatrix[[4,2]]==2,numberoffills7++];
If[localtestmatrix[[4,4]1]==2,numberoffills7++];
If(localtestmatrix[[5,2]]==2,numberoffills7++];
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If[localtestmatrix[[5,4]]==2,numberoffills7++];
isgood=True;rotations=ct—1; s7formrotations=ct-1];
isneeded=Truel;
subtestmatrix=rotate5by5[localtestmatrix,1];
localtestmatrix=subtestmatrix;
,{ct,1,4}];
If[isneeded && Not[isgood],
Print["s8 or s7 assumption not holding at location
" matrixi,matrixj,localtestmatrix];
dolater=True];
I1f[Not[isneeded] &% Not[isgood], Print["Ignore this £i11"];ignore=Truel;

(% —m—m e — e — oo msmm s *)
(* If both s8 and s7 occur, this will give preference to s8 *)
(¥ —mmm e oo om— oo s *)

If [NumberQ[s8formrotations],numberoffills=numberoffillss,
If[NumberQ[s7formrotations],numberoffills=numberoffi11s7]];
numberoffills

);

(% = o S ST oSS SSmmsm o omossooom e
(* This procedure will return a list of fill points in the order of

(* minimizing the boundary terms used.

(# It will do this by ordering the fill points in the order of minimal fill
(* points in the spatial interpolation stencil

(% mmm o oSS SSmmsmeooosomo o

minimizeboundary2:=(

T Tttt e *)
(* Gather all the fill points in entire grid whether needed or not *)
(F —mmm e oo o—ooo oS —oemoes *)

fillposlist=Position[thegrid,z];

filletlist={};

Dol

(% —m—mmm e mmm e —o oo ossee *)
(* Get the location of the fill point in matrix coordinates *)
(* =—m— e — o — oo —o oo oo ms o *)

matrixi=fillposlist[[ct]][[1]];
matrixj=fillposlist[[ct11[[2]1];

(% mem—mm e — o —— oo *)
(* Get the 7 by 7 stencil with the fill in the center *)
(* —mm e m e — o *)
stencil?by7=SubMatrix[thegrid,{matrixi—3,matrixj—3},{7,7}];
(k —mmmmm e oo *)
(* Count the number of fills in the s8 or s7 stencil *)
(F ——mmm e — o —— oo *)

{bestquadnumber,numberoffills}=getnumberoffillsinstencilZ[stencil7by7];
st
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(* If bestquadnumber is zero, this fill has no adjacent interior; ignore it *)
(* Otherwise, make a list of all legal stencil fill counts for sorting *)
(L *)
If[bestquadnumber!=0, AppendTo[fillctlist,{numberoffills,ct,bestquadnumber}]];
,{ct,1,Length[fillposlist]}];

(F *)
(* At this point have a list that needs sorted, each element has 3 parts *)
(* 1. Number of fills 2. index of fill point in fillposlist *)
(* 3. correct quadrant to use with this fill point *)
(F o *)

minimizeboundarylist=Sort[fillctlist];
maximizeboundarylist=Reverse[minimizeboundarylist];

returnlist={};

(e *)
(* Favor the interior data information by using stencils with fewest number *)
(* of fills. *)
(K *)
Do{

index=minimizeboundarylist [[ct]I[[2]];
quadtouse=minimizeboundarylist [[ct]] [[3]];
fillpointlocation=Append[fillposlist[[index]],quadtouse];
AppendTo[returnlist,fillpointlocation];
»{ct,1,Length[maximizeboundarylist]}];

(*

Do(

index=maximizeboundarylist[[ct]]1[[2]];
quadtouse=maximizeboundarylist [[ct]][[31];
fillpointlocation=Append[fillposlist[[index]],quadtouse];
AppendTo[returnlist,fillpointlocation];
,{ct,1,Length[maximizeboundarylist]}];

*)

returnlist

);

(e *)
(* This procedure will return a list of fill points in the order of *)
(* minimizing the boundary terms used. *)
(K o *)

minimizeboundary:=(

(F mm *)
(* Gather all the fill points in entire grid whether needed or not *)
(F o *)

fillposlist=Position[thegrid,2];
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fillctlist={};

Dol

(# —mmmmmmmmmm e mm e mm— oo —oooo—o o SmsosomoTTTTET *)
(* Get the location of the fill point in matrix coordinates *)
(* ——mmmmmm e m e m e mm oo —oo oS ——o oo oommoTEmET e *)

matrixi=fillposlist[[ct]IL[[11];
matrixj=fillposlist[[ct]1[[2]];

(¥ ——mm—mm—mmmm——mm—mme— oo s—so———m o omsmoooTeTT *)

(* Get the 5 by 5stencil with the fill in the center *)

(k —m—mmm—mmmmm——mmm———— oo - ——————oo——ssmms oo *)
stenciley5=SubMatrix[thegrid,{matrixi—2,matrixj—2},{5,5}];
Tt *)

(* Count the number of fills in the s8 or s7 stemncil *)

(% ——mmmm—mmmm——m—mm—————m——— oo o ooo— oo ooommmm oo *)
numberoffills=getnumberoffillsinstencil[stencileyS];

T *)
(* If numberoffills is zero, this fill has no s8 or s7 stencil so ignore it *)
(* Otherwise, make a list of all legal stencil £ill counts for sorting *)
(¥ ——mmmmemmm oSS Co oo oo—SmSmosmomToTTomTTTTEmmm *)

If [numberoffills>0, AppendTo[fillctlist,{numberoffills,ct}]];
,{ct,1,Length[fillposlist]}];

it *)
(* At this point have a list that needs sorted, each element has two parts *)
(* 1. Number of fills 2. index of fill point in fillposlist *)
e *)

minimizeboundarylist=Sort[fillctlist];
maximizeboundarylist=Reverse[minimizeboundarylist];

returnlist={};

(¥ mmm eSS oo oSS SSSomomommTTTETTETTTTTTTT *)
(* Favor the interior data information by using stencils with fewest number *)
(* of fills. *)
(% ——mmm e oS SoSoooooSSSooSooTooTTETmmmmmmmmTTTT *)
Dol

index=minimizeboundarylist[[ct]l][[2]];
fillpointlocation=fillposlist[[index]];
AppendTo[returnlist,fillpointlocation];
,{ct,i,Length[maximizeboundarylist]}];
returnlist

);

(K mmmm e m oo oSS SSooSooToTTTTTTTTT *)

(* This procedure will compute the normal and tangential derivatives *)
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(* of a function. *)
(¥ o *)
computederivative[thefunction_,dnormal_,dtangent_]:=(

Clear[ff,x,y];

mygrad[ff_]:= {D[ff,x],D[£f,y]l};

derfntaul0,0] = thefunction;

(ke *)
(* Take multiple directional derivatives in direction normal *)
(o *)
Dol

derfntaulct,0] = Simplify[mygrad[derfntau[ct—i,0]].{normx,normy}];
,{ct,1,dnormal}];

(% ———— e *)
(* The tangent . normal = 0 *)
T —— *)

tangx=-normy;
tangy=normx;
T *)
(* Take multiple directional derivatives in direction tau, tangent *)
(F o 1 *)
(*

derfntaul[0] = derfn[dnormall;

*)

Dol

derfntau[dnormal,ct] = Simplify[mygrad[derfntau[dnormal,ct—l]].{tangx,tangy}];
»{ct,1,dtangent}];

Print[“Collecting..."];

(*

Collect[derfntauldtangent],pdatal_,_,_,_1]

FullSimplify[derfntauldtangent]]

*)

(=
Collect[derfntau[dtangent],{D[HXO[_,_],{x,_},{y,_}],D[HX1[_,_],{x,_},{y,_}],D[HY
o, 3,{x, },{y,_}1,pMHY1(_,_ ],{x,_},{y,_}1},FullSimplity]
Collect[derfntau[dtangent],D[thefunction,{x,_},{y,_}],FullSimplify]
Collect[derfntau[dtangent],variablelistp,Factor]

derfntauldtangent]

Collect[derfntauldtangent],{Derivative[_, _J[HX0J[_, _),Derivativel[_,

-JIEX11[_, _J,Derivativel[_, _1[HYO][_, _],Derivativel_, _J0EY1IL,
_1},FullSimplify]

*)

thehead=Head[thefunction];
Collect[derfntau[dnormal,dtangent],{Derivative[_,_][thehead][x,y]},FullSimplify]
)

(¥ e *)
(* Procedure to manually build the derpntau function *)
(F mm e *)

buildderf[infunction_,nder_,tder_]:=(
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Clear[f,dx,dy,de,thecoef];

de=Table[Table[Table[Table[O,
{dx,0,degree}]

,{dy,0,degree}]

,{ict,1,2}]

,{jet,1,2}];

(*
Print["In buildderf de = ",del;
*)

thefunc=infunction;

(¥ =m—mm e m e — o ——————— - *)

(* Handle the degenerate case of no derivatives *)

(% =m—mmmmm e m e m oo *)

If [nder==0 && tder==0,

(F mmm e ST om—o— oo s *)
(* Loop through all the data elements in the stencil adding the *)
(* HX HY thecoef factor *)
(% —m e oo o oo *)
Do[Dol

Do[Dol[

termx=Symbol ["HX"<>ToString[ict]<>"D"<>ToStringldx]1[x];
termy=Symbol ["HY"<>ToString[jct]<>"D"<>ToString[dylI [yl;
de[[2-jct,ict+1,dx+1,dy+1]11+=(1) D[termx,{x,0}] D[termy,{y,0}];
,{dx,0,degreel}]

,{dy,0,degreel}]

,{ict,0,1}]

,{jct,0,1}]

1
If[Not[nder==0 && tder==0],

(F — oSS oo mmssoo s *)
(* Calculate the normal and tangential derivative of undefined function *)
( mmm e oSS so— oo omm oo *)

getcoeffunc=computederivative[f[x,y],nder,tder];

(# —mmm e e —m e —mm oo *)

(* Loop through all terms in the function’s derivative *)

(¥ —mmm oo —m s %)

Dol

dyct=(Length[getcoeffunc]-1)-dxct;
Al *)
(* This is the coefficients that are for now comment to prevent symbol *)
(* explosion *)
Tt *)
thecoef[dxct,dyct]=Coefficient[getcoeffunc,Derivative[dxct,dyct][f][x,y]];
(*
thecoefdefinition[dxct,dyct]=Coefficient[getcoeffunc,Derivative[dxct,dyct][f][x,
y11;

*)
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(F m *)
(* Loop through all the data elements in the stencil adding the *)
(* HX HY thecoef factor *)
(* e ————— e *)
Do[Dol
Do[Do[

termx=Symbol ["HX"<>ToString[ict]<>"D"<>ToString[dx]][x];
termy=Symbol["HY"<>ToString[jct]<>"D"<>ToString[dyl][y];

(*

Print["Doing ",dxct,dyct,ict, jct,dx,dy,thecoef [dxct,dyct], D[termx,{x,dxct}],
D[termy,{y,dyct}]];

*)

de[[2-jct,ict+1,dx+1,dy+1]]+=thecoef [dxct,dyct] Dltermx,{x,dxct}]
D[termy,{y,dyct}];

,{dx,0,degree}]

,{dy,0,degree}]

,{ict,0,1}]

,{jct,0,1}]

,{dxct,0,Length[getcoeffunc]-1}];

1;

(F m e *)

(* The complete partial f /over partial n partial tau is *)

(F e e *)

(=

infunctionix_,y_] := Sum[Sum[Sum[Sum[

*)

Sun[Sum[Sum[Sum[pvarordatal2-jct,ict+1,dx+1,dy+1] de[[2-jct,ict+1,dx+1,dy+1]]
,{dx,0,degreel}]

,{dy,0,degree}]

,{ict,0,1}]

,{jct,0,1}]

)i

(K e *)
(* Build all the equations required for solving all the data at a particular *)
(* f£ill point. *)
(F e *)

buildequationsforafillpoint:=(
makehermid;

Clear[x,y,normx,normy,tangx,tangy];
equationct=1;

derpntaulist={};

deruntaulist={};

dervntaulist={};
nandtlist={{1,0},{3,0},{1,1},{3,1}};
(*

Dol

dnorm=nandtlist[[nandtct]][[1]];
dtau=nandtlist[[nandtct]] [[2]];
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*)

Do[Dol

If[equationct(:(degree+1)*2,

(* take derivatives in normal direction 2n+1 with n=0,1,2,3 ... *)

(K mmm o oSS o omSmoosomommeo T *)
(* Pressure wall boundary normal derivative = 0 *)
(* partial~{2n+1} p / partial N-{2n+1} partial T"{t} = O for n,t = 0,1,2,3 *)
(F o mm e e S mSmmSSooommom oo *)
Print["dnorm: ",dnorm,” dtau : " ,dtau];

thepequation=buildderf [prhs[x,y],dnorm,dtaul;
AppendTo[derpntaulist,thepequation==0];

Clear[al,bl,c1,d1];

AppendTo[deruntaulist,(thepequation/. {pvarordatalal:_,b1:_,cl:_,d1:_]->tangx
uvarordatalal,bl,c1,d1] + tangy vvarordatalal,bl,c1,d1]})==0];
thevequation=buildderf[prhs[x,y],dnorm—l,dtau];

Clearf{al,bl,c1,d1];

AppendTo[dervntaulist, (thevequation/. {pvarordatalal:_,b1:_,cl:_,d1:_]->normx
uvarordatalal,bl,c1,di] + normy vvarordatalal,bl,c1,d1]1})==0];

equationct++;

]

(*

,{nandtct,i,Length[nandtlist]}];

*)

,{dnorm,1,2*(degree+1),2}]

,{dtau,0,2*(degree+1)}];

(% ————m—mm——— e *)
(* Define the H’s symbolically *)
(¥ =————————m o= *)

Clear[x0,x1,y0,y1,x1,y1];
Clear["HXO*”,”HX1*",”HYO*","HY1*"];

Do[

newsymb011=Symbol[”HXOD"<>ToString[dx]];
newsymboli[x_]=Simplify[Coefficient[hermpolyid[x],fdata[dx,xO]]];
newsymbol2=Symbol["HX1D"<>ToStringldx1];
newsymbolz[x_]=Simplify[Coefficient[hermpolyld[x],fdata[dx,xl]]];
newsymbol3=Symbol["HYOD"<>ToString[dx]];
newsymbol3[y_l=newsymboll[x] /. {x->y,x0->y0,x1->y1};
newsymbol4=Symbol ["HY1D"<>ToString[dx]];
newsymbol4[y_l=newsymbol2[x] /. {x->y,x0->y0,x1->y1};
,{dx,0,degree}];

x0=-deltax/2;
x1= deltax/2;
y0=—deltax/2;
yi= deltax/2;

(% —————mmmm *)
(* Define the thecoef *)
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(% ————mmmmmmee *)

(*
thecoefldx_,dy_J]:=thecoefdefinition[dx,dy];
*)

);

makehermid:=(

If[Not[ValueQ[degreell,

degree=Input ["Enter the degree: "];

1;

Clear[x0,x1,fdiv];
ptlist=Join[Table[xO,{i,O,degree}],Table[xl,{i,o,degree}]];
Clear[fdiv];

If[Not[ListQ[ptlist]],

ptlist=Input["Enter the list of point locations"]];
Dol

Print["Column: *",column];

Do[
subptlist=Take[ptlist,{subparts,subparts+column}];
Print["fdiv[",Flatten[subptlist],"]"];

(% e *)
(* Now assign fdiv[subptlist] *)
(k —— *)

If[Length[subptlist]==1,

fdiv[subptlist]=fdata[0,First[subptlist]]];

(F e . *)
(* If the last and first index is at the same location then this is *)
(* a derivative term divided difference and needs specially assigned *)
(e *)
If[Length[subptlist]>1,

If[First[subptlist]===Last[subptlist],
fdiv[subptlist]=fdatalcolumn,First[subptlist]]/(Length[subptlist]-1)!]];

(F e *)
(* If not, then apply Divided Difference Recurrence Relation to general *)
(* case. *)
(% == - - Rt *)

If[Length[subptlist]>1,
If[First[subptlist]='=Last[subptlist],
fdiv[subptlist]=(fdiv[Drop[subptlist,1]] - fdiv[Droplsubptlist,-1]1)/
(Last[subptlist] -

First[subptlist]);

11;

(*

Print["Assigned : ",fdiv[subptlist]]
*)
»{subparts,1,Length[ptlist]-column}]
»{column,0,Length[ptlist]-1}];

(*
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degree=2;
ptlist={x0,x0,x0,x1,x1,x1};
buildtab;

*)

hermpolyid[x_]:=Collect[Sum[ Product [(x-ptlist[[j1]1),{j,1,n-1}]
fdiv[Table[ptlist[[ptct]],{ptct,1,n}]1] ,{n,1,Lengthlptlist]}],fdatal_,_11;
)

(*
normxtemp[1,1]:=0;
normytemp(1,1]:=0;

normxtemp[1,1]:=-.707107;
normytemp[1,1]):= .707107;
normxtemp[2,1]:= .707107;
normytemp[2,1]:= .707107;
normxtemp[1,2]:= .707107;
normytemp[1,2]:=-.707107;

xcoord2[1,1]:=-0.664214;
ycoord2[1,1]:=0.25;

xcoord2[2,1]:=-0.707107;
ycoord2[2,1]:=-0.707107;

xcoord2[1,2]:=-0.207107;
ycoord2[1,2]:=0.707107;

xcoord2[1,1]:=-Sqrt[2]+.25;
ycoord2[1,1]:=-.25;

xcoord2[1,1]:=-.9+.25;
ycoord2[1,1]:=0.264214;
xcoord2[1,1]:=-.9+.25;

ycoord2[1,1] :=fy[xcoord2[1,1]];
y-(0.707107) = 1 ( x - -0.207107)
fy[-.9+.25]

fyl[fx_J:= 1 ( £fx - -0.207107) + (0.707107)
Clear [normxtemp,normytemp,xcoord2,ycoord2] ;

column=1;

Dol

Print["Row : ",ct," Column : ",column," = *,pmatrix[[ct,column]]]
,{ct,1,Dimensions{pmatrix] [[1]]}]

oper[a_,b_]:=Expand[(nx dx + ny dy)~a (ny dx - nx dy) b];
oper[a_,b_]:=Expand[(nx Derivative[1,0] + ny Derivative[0,1])"a (ny
Derivative[1,0]- nx Derivative[0,1])°b];

/. {Derivative[1,0]"c:_ —>Derivative[c,0], Derivative[0,1]°d:_
->Derivativel[d, 0]}
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Through[operator [p[x,y11] /. {[p[x,yl]1->[p][x,yl}

*)

showneighbors[mi_,mj_]:=(
Clear[ldx,1ldy,ict,jctl;
milocal=mi;

mjlocal=mj;

(*
fillposlist=correctfillordering;
Dol
matrixi=fillposlist[[ct]l]1[[11];
matrixj=fillposlist[[ct]1I{[21];
*)

Do[Dol

matrixi=milocal+ictloop;
matrixj=mjlocal+jctloop;

ict= matrixj-im-1;
jet=—matrixi+im+1;
oldphysicalpositionvector={ict*de1tax,jct*deltax};

(% =——mmmmmmm e mm e m s *)
(* Need to unrotate coordinates to get solution here *)
(% ——=———mmm e m oo *)

newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[—theta],{0,0}];
(*
newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[theta],{0,0}];
*)

newphysicalicoord=newphysicalpositionvector[[1]];
newphysicaljcoord=newphysicalpositionvector[[2]];

Do[Dol[

correctp = -N[(D[Cos[Sqrt[2] Pi physicaltime] Cos[Pi x] Cos[Pi
yl,{x,1ldx},{y,1dy}1 /. {x->newphysicalicoord,y->newphysicaljcoord})];

(%

If[thegrid[[matrixi,matrixj]]!=2,Print["Fill Error"ll;

*)

If[Abs[pressuregrid[[matrixi,matrixj,ldx+1,ldy+1]]—correctp]>.5,
Print["*Pressure[“,matrixi,“,",matrixj,",",ldx,",",1dy,"]=”,pressuregrid[[matrix
i,matrixj,1dx+1,1dy+1]]1," correctp =",correctpl,
Print["Pressure[“,matrixi,”,",matrixj,",",ldx,",”,ldy,"]=",pressuregrid[[matrixi

,matrixj,ldx+1,1dy+11]," correctp =",correctpl]
,{1dx,0,degree}]
,{1dy,0,degree}]
,{ictloop,0,2}]
,{jctloop,0,2}];

) ’

(% —=——m=——m e mm e m o —— o *)
(* Perform Gaussian Elimination with pivoting *)
(* From Cormen p. 754 *)
(% ——m=m——m e m oo — o *)

lupdecomposition[matrix_]:=
Module[{a,n,pm,p,kp,k,i,j},
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a=matrix;
n=Dimensions[a] [[1]];
pn=Table[i,{i,1,n}];
Dol
p=0;
Dol
If[Abs[al[[i,k]1]1> p, p = Abs[alli,k11]; kp = il;
,{i,k,n}];

1f[p=0,Print["Singular Matrix"]; Break];
{pm[[x]],pm[[kpl]1}={pm[[kpl],pml[k1]};

Dol
{allk,i]],al[kp,i]1}={allkp,1]],al[k,i]1]}
,{i,1,n}]1;
Dol
alli,k1] = alli,k11/allk,k1];
Dol
alli,jll=alli,j11-(alli, k1] allk,j11)
,{j,k+1,n}];
,{1,k+1,n}];
,{k,1,n-1}];
{a,pm}
I
(¥ o e oSS msSsoomoomooe e *)
(* Provide the solution to the linear system that was divided into an LU-Decom#)
(% = oS C oSS ooSsooemmSomomTTeeT *)

lupsolve[a_,pm_,b_]:=Modu1e[{n,x,y,i,j},
n=Dimensions[a] [[1]1];

x=Table[0,{i,1,n}];

y=Table[0,{i,1,n}];

Dol

y[[i11=b[[pm[[i]113] - Sum[ a(li,j]] y[[311 , {j,1,1i-1}]);
,{i,1,n}1;

Dol

x[[i]1= (y[[il] - sum[ alli,33] xC[3]1] ,{j,i+1,n¥])/alli,il]
,{i,n,1,-1}]1;

x

1;
T sttt *)
(F —m e eSS oS oo oo oomooo oo *)

solvesystem[matrix_,rhsvector_]:=Modu1e[{sings,conditionnumber,det,a,pm,lhsvecto
T},

sings=SingularValues [N[matrix]]1[[21];

conditionnumber=Sqrt [Max[sings]/Min[sings]];

det=Det [matrix];

Print["Matrix Condition #:",conditionnumber," and determinant ;v N[detl];
{a,pm}=1updecomposition[matrix];
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1hsvector=1upsolve[a,pm,rhsvector];
Flatten[lhsvector]
1;

(F e~ *)
(* This routine uses low level C to compute the LU solve *)

(K m e *)

solvesysteminc[matrix_,rhsvector_]:=Hodule[{sings,conditionnumber,det,a,pm,lhsve
ctor},

Install["compiledsolvesystem.exe"];

(*

sings=SingularValues{[N[matrix]][[2]];
conditionnumber=Sqrt[Max[sings]/Min[sings]];

det=Det [N[matrix]];

Print["Matrix Condition #:",conditionnumber," and determinant :",N[det]];

*)
lhsvector=compiledsolvesystem[Flatten[N[matrix]],Flatten[N[rhsvector]],Dimension
s[matrix] [[1]1];

Print["Done with solve"];

Flatten[lhsvector]

1;

(k- *)
(* This uses p. 763 Cormen to solve system in C by getting inverse then *)
(* multiplying in MMA for symbolic RHS *)
(% — *)

solvesystemincnofc[matrix_,rhsvector_]:=Module[{sings,conditionnumber,det,a,pm,l
hsvector,lumatrixandpm,lumatrix},

(*

sings=SingularValues [N[matrix]][[2]];
conditionnumber=Sqrt [Max [sings]/Min[sings]];

det=Det [N[matrix]];

Print["Matrix Condition #:",conditionnumber,' and determinant :",N[det]];
*)

Install[“compiledinv.exe"];

n=Dimensions[matrix] [[1]];
invmatrix=Partition[compiledinv[Flatten[N[matrix1],n],n];
lhsvector=invmatrix.rhsvector;

Flatten[lhsvector]

1;
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